Dhjdjdjdjdjdjdjduddj google it
Answer:
-4 < n ≤ 5
Step-by-step explanation:
________________
Answer:

Step-by-step explanation:
We need to integrate the given expression. Let I be the answer .
- Let u = 3x , then du = 3dx . Henceforth 1/3 du = dx .
- Now , Rewrite using du and u .

Concussion guy Union rep pic leg in on no on TV Nick datedu I’m a