Answer with explanation:
The triangle in the Diagram Described has following measurement:
Longest Side = 65 units
One side which can be either Perpendicular or base = 63 units
And , other side which can be also, either Perpendicular or base = 16 units
We can prove that the triangle described is right triangle by two ways.
1. Using Converse of Pythagorean Theorem
Square of Longest side = Sum of Squares of other two sides-----(1)
So, Square of Longest Side = 65²=4225
Sum of Square of other two sides = 16² + 63²
= 256 + 3969
= 4225
Statement (1), is valid.
So,Triangle is right angled triangle, right angled at A.
2. using Trigonometric Ratios
Suppose the triangle is right Angled at A.
In Right triangle B AC
![tan B=\frac{\text{Perpendicular}}{\text{Base}}\\\\tan B=\frac{16}{63}\\\\tan C=\frac{63}{16}\\\\ tan(B +C)=\frac{tan B + tan C}{1-tan B \times tanC}\\\\tan (B +C)=\frac{\frac{16}{63}+\frac{63}{16}}{1-\frac{16}{63}\times \frac{63}{16}}\\\\tan (B +C)=\frac{\text{Any rational number}}{0}\\\\tan (B +C)=\infty\\\\B +C=90^{\circ}\\\\ \text{Using the trigonometric Identity},tan(A+B)=\frac{tan A +tan B}{1-tan A*tan B}](https://tex.z-dn.net/?f=tan%20B%3D%5Cfrac%7B%5Ctext%7BPerpendicular%7D%7D%7B%5Ctext%7BBase%7D%7D%5C%5C%5C%5Ctan%20B%3D%5Cfrac%7B16%7D%7B63%7D%5C%5C%5C%5Ctan%20C%3D%5Cfrac%7B63%7D%7B16%7D%5C%5C%5C%5C%20tan%28B%20%2BC%29%3D%5Cfrac%7Btan%20B%20%2B%20tan%20C%7D%7B1-tan%20B%20%5Ctimes%20tanC%7D%5C%5C%5C%5Ctan%20%28B%20%2BC%29%3D%5Cfrac%7B%5Cfrac%7B16%7D%7B63%7D%2B%5Cfrac%7B63%7D%7B16%7D%7D%7B1-%5Cfrac%7B16%7D%7B63%7D%5Ctimes%20%5Cfrac%7B63%7D%7B16%7D%7D%5C%5C%5C%5Ctan%20%28B%20%2BC%29%3D%5Cfrac%7B%5Ctext%7BAny%20rational%20number%7D%7D%7B0%7D%5C%5C%5C%5Ctan%20%28B%20%2BC%29%3D%5Cinfty%5C%5C%5C%5CB%20%2BC%3D90%5E%7B%5Ccirc%7D%5C%5C%5C%5C%20%5Ctext%7BUsing%20the%20trigonometric%20Identity%7D%2Ctan%28A%2BB%29%3D%5Cfrac%7Btan%20A%20%2Btan%20B%7D%7B1-tan%20A%2Atan%20B%7D)
B +C =90°
Also,→ ∠A + ∠B + ∠C=180°≡ (Angle sum property of triangle)
→∠A +90°=180°
→∠A=180° -90°
→∠A=90°
So, triangle is right Angled triangle , Right angled at A.
Hence ,proved.