Answer:
3384
Step-by-step explanation:
Answer: B. neither
<u>Step-by-step explanation:</u>
A function is even when f(x) = f(-x).
A function is odd when f(-x) = -f(x).
f(x) = 2x³ - x²
f(-x) = 2(-x)³ - (-x)²
= -2x³ - x²
f(x) = 2x³ - x² ≠ f(-x) = -2x³ - x² so it is NOT EVEN
-f(x) = -(2x³ - x²)
= -2x³ + x²
f(-x) = -2x³ - x² ≠ -f(x)= -2x³ + x² so it is NOT ODD
Therefore, it is NEITHER even nor odd.
Answer:
Step-by-step explanation:
Rearrange each function to solve for x.
Switch x and y,
The resulting equation is the inverse function.
A:
f(x) = y = 5+x
x = y-5
y = x-5
f⁻¹(x) = x-5
g(x) = 5-x ≠ f⁻¹(x)
g(x) is not the inverse of f(x).
:::::
B:
f(x) = y = 2x-9
x = (y+9)/2
y = (x+9)/2
f⁻¹(x) = (x+9)/2
g(x) = (x+9)/2 = f⁻¹(x)
g(x) is the inverse of f(x).
:::::
C:
f(x) = y = 2/x - 6
x = 2/(y+6)
y = 2/(x+6)
f⁻¹(x) = 2/(x+6)
g(x) = (x+6)/2 ≠ f⁻¹(x)
:::::
D:
f(x) = y = x/3 + 4
x = 3y - 12
y = 3x - 12
f⁻¹(x) = 3x - 12
g(x) = 3x - 4 ≠ f⁻¹(x)
g(x) is not the inverse of f(x).