Answer: RQ= 8.99 ( approx)
Step-by-step explanation:
Let MR= x
Since, In triangle, PRQ, tan 75°= ![\frac{18+x}{RQ}](https://tex.z-dn.net/?f=%5Cfrac%7B18%2Bx%7D%7BRQ%7D)
⇒ RQ= ![\frac{18+x}{tan 75^{\circ}}](https://tex.z-dn.net/?f=%5Cfrac%7B18%2Bx%7D%7Btan%2075%5E%7B%5Ccirc%7D%7D)
Now, In triangle MRQ,
tan 60°= ![\frac{18+x}{RQ}](https://tex.z-dn.net/?f=%5Cfrac%7B18%2Bx%7D%7BRQ%7D)
⇒ RQ= ![\frac{x}{tan 60^{\circ}}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7Btan%2060%5E%7B%5Ccirc%7D%7D)
On equating both values of RQ,
![\frac{18+x}{tan 75^{\circ}}=\frac{x}{tan 60^{\circ}}](https://tex.z-dn.net/?f=%5Cfrac%7B18%2Bx%7D%7Btan%2075%5E%7B%5Ccirc%7D%7D%3D%5Cfrac%7Bx%7D%7Btan%2060%5E%7B%5Ccirc%7D%7D)
⇒![\frac{18+x}{x}=\frac{tan 75^{\circ}}{tan 60^{\circ}}](https://tex.z-dn.net/?f=%5Cfrac%7B18%2Bx%7D%7Bx%7D%3D%5Cfrac%7Btan%2075%5E%7B%5Ccirc%7D%7D%7Btan%2060%5E%7B%5Ccirc%7D%7D)
⇒![\frac{18+x}{x}=\frac{tan 75^{\circ}}{tan 60^{\circ}}](https://tex.z-dn.net/?f=%5Cfrac%7B18%2Bx%7D%7Bx%7D%3D%5Cfrac%7Btan%2075%5E%7B%5Ccirc%7D%7D%7Btan%2060%5E%7B%5Ccirc%7D%7D)
⇒![\frac{18+x}{x}=2.15470053838](https://tex.z-dn.net/?f=%5Cfrac%7B18%2Bx%7D%7Bx%7D%3D2.15470053838)
⇒![18=2.15470053838x-x](https://tex.z-dn.net/?f=18%3D2.15470053838x-x)
⇒
≈15.60
Thus RQ=8.99999999999≈8.99
Answer:
The area will be increased by 72 feet.
Step-by-step explanation:
4 x 6 = 24
Now we have to double those lengths.
We know that 4 x 2 is 8 and 6 x 2 is 12.
So the new equation would be: 8 x 12 = 96
Now we take the original area and subtract it by the new area.
96 - 24 = 72
Hope this helps:)
18 over 36 simplified is 1/2
Answer:
400cm²
Step-by-step explanation:
Total surface area of a prism includes the area of the top and bottom triangle sides of the prism, plus the area of all 3 rectangular sides.
Base & Bottom triangle area: 2 x [(8 x 15)/2] = 120cm²
Side triangle area: 17 x 7 + 8 x 7 + 15 x 7 = 280cm²
Total surface area = 280 + 120 = 400cm²
Answer:
Quaternions are a number system that extends the complex numbers they convenient mathematical notation for representing orientations and rotations of objects in three dimensions
Step-by-step explanation:
My friend and google helped me and my notes