Answer:
1) x = 40° & y = 50°
2) x = 100° & y = 80°
Step-by-step explanation:
1)
ABCD is a cyclic quadrilateral (∵ all the vertices of the quadrilateral are touching on the circle). As it is a cyclic quadrilateral , sum of it's opposite angles will be 180°.
⇒ ∠ADC + ∠ABC = 180°
⇒ 130° + y = 180°
⇒ y = 180 - 130 = 50°
In ΔABC ,
∠ACB = 90° (∵ AB is the diameter of the circle and a diameter subtends an angle of 90° on any point on circle.)
Using angle sum property of triangle ,
∠ABC + ∠ACB + ∠CAB = 180°
⇒ y + 90° + x = 180°
⇒ x + 50° + 90° = 180°
⇒ x + 140° = 180°
⇒ x = 180 - 140 = 40°
2)
ΔABC is an isosceles triangle (∵AB = AC). As it is an isosceles triangle , it's base angles will be equal. So , ∠ABC = ∠ACB = 50°
Using angle sum property of triangle ,
∠ABC + ∠ACB + ∠BAC = 180°
⇒ 50° + 50° + y = 180°
⇒ y + 100° = 180°
⇒ y = 180 - 100 = 80°
ABEC is a cyclic quadrilateral (∵ all the vertices of the quadrilateral are on the circle.). As it is a cyclic quadrilateral , sum of it's opposite angles will be 180°.
⇒ ∠BAC + ∠BEC = 180°
⇒ y + x = 180°
⇒ x + 80° = 180°
⇒ x = 180 - 80 = 100°
Step-by-step explanation:
the three angles =180
because they are <u>supplementary angles </u>
<em>I hope this help</em>
What area of a combined rectangle?
Answer:
See below
Step-by-step explanation:
We can make a the number of days and y the number of workers
Since we were told there is an inverse relationship between the days required to build the house and the number of workers required, then,
The equation would be
y = k/x
Here, y is inversely proportional to x and k is the constant proportionality
So, out required equation would be
a = k/n
Fixing the values, we'll have
55 = k/8
k = 55 × 8
k = 440
The number of days required to build a similar house with 5 workers will now be
= 440/5
= 88 days
Now cos⁻¹(0.7) is about 45.6°, that's on the first quadrant.
keep in mind that the inverse cosine function has a range of [0, 180°], so any angles it will spit out, will be on either the I quadrant where cosine is positive or the II quadrant, where cosine is negative.
however, 45.6° has a twin, she's at the IV quadrant, where cosine is also positive, and that'd be 360° - 45.6°, or 314.4°.
now, those are the first two, but we have been only working on the [0, 360°] range.... but we can simply go around the circle many times over up to 720° or 72000000000° if we so wish, so let's go just one more time around the circle to find the other fellows.
360° + 45.6° is a full circle and 45.6° more, that will give us the other angle, also in the first quadrant, but after a full cycle, at 405.6°.
then to find her twin on the IV quadrant, we simply keep on going, and that'd be at 360° + 360° - 45.6°, 674.4°.
and you can keep on going around the circle, but only four are needed this time only.