The correct answer is C july-september plz mark as brainliest!
Answer:
1 / i + 1 / o = 1 / f thin lens equations
i = o f / (o - f) rearranging
Lens 1: object = 30 cm f = 15.2 cm
i1 = 30 * 15.2 / (30 - 15.2) = 30.8 cm
o2 = 40.2 - 30/8 = 9.4 cm distance of image 1 from lens 2
i2 = 9.4 * 15.2 / (9.4 - 15.2) = - 24.6 cm
The final image is 24.6 cm to the left of lens 2
The first image is inverted
The second image is erect (as seen from the first image)
So the final image is inverted
M = m1 * m2 = (-30.8 / 30) * (24.6 / 9.4) = -2.69
To solve this problem we will apply the concept related to the conservation of the Momentum. We will then start considering that the amount of initial momentum must be equal to the amount of final momentum. Considering that all the objects at the initial moment have the same initial velocity (Zero, since they start from rest) the final moment will be equivalent to the multiplication of the mass of each object by the velocity of each object, so
Initial Momentum = Final Momentum

Here,
= mass of Raft
= Mass of swimmers 1
= Mass of swimmers 2
= Initial velocity (of the three objects)
= Velocity of Raft
Replacing,

Solving for 


Therefore the velocity the rarft start to move is 0.3618m/s
Answer:
2.572 m/s²
Explanation:
Convert the given initial velocity and final velocity rates to m/s:
- 65 km/h → 18.0556 m/s
- 35 km/h → 9.72222 m/s
The motorboat's displacement is 45 m during this time.
We are trying to find the acceleration of the boat.
We have the variables v₀, v, a, and Δx. Find the constant acceleration equation that contains all four of these variables.
Substitute the known values into the equation.
- (9.72222)² = (18.0556)² + 2a(45)
- 94.52156173 = 326.0046914 + 90a
- -231.4831296 = 90a
- a = -2.572
The magnitude of the boat's acceleration is |-2.572| = 2.572 m/s².