Answer:
c
Step-by-step explanation:
Answer:
(a)Revenue function,
Marginal Revenue function, R'(x)=580-2x
(b)Fixed cost =900
.
Marginal Cost Function=300+50x
(c)Profit,
(d)x=4
Step-by-step explanation:
<u>Part A
</u>
Price Function
The revenue function

The marginal revenue function

<u>Part B
</u>
<u>(Fixed Cost)</u>
The total cost function of the company is given by 
We expand the expression

Therefore, the fixed cost is 900
.
<u>
Marginal Cost Function</u>
If 
Marginal Cost Function, 
<u>Part C
</u>
<u>Profit Function
</u>
Profit=Revenue -Total cost

<u>
Part D
</u>
To maximize profit, we find the derivative of the profit function, equate it to zero and solve for x.

The number of cakes that maximizes profit is 4.
I think the answer is Q = -3
Answer:
x=50 y=10
Step-by-step explanation:
Answer:
p=1
Step-by-step explanation:
2/5 + p = 4/5 + 3/5p
Multiply each side by 5 to clear the fractions
5(2/5 + p) = 5(4/5 + 3/5p)
2 +5p = 4 + 3p
Subtract 3p from each side
2+5p-3p = 4+3p-3p
2+2p = 4
Subtract 2 from each side
2+2p -2 = 4-2
2p =2
Divide by 2
2p/2 = 2/2
p=1