Answer:
Since zero is on the origin (0,0) a 90 degree rotation will intercept the origin no matter what so, it can't be parallel.
Step-by-step explanation:
Answer:
5.96% probability that exactly 3 people in the sample are afraid of being alone at night.
Step-by-step explanation:
For each person, there are only two possible outcomes. Either they are afraid of being alone at night, or they are not. The probability of a person being afraid of being alone at night is independent of any other person. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
5% of Americans are afraid of being alone in a house at night.
This means that 
If a random sample of 20 Americans is selected, what is the probability that exactly 3 people in the sample are afraid of being alone at night.
This is P(X = 3) when n = 20. So


5.96% probability that exactly 3 people in the sample are afraid of being alone at night.
Answer:
one solution with a y value of 5
Step-by-step explanation:
/| x+y-4 = 0| x-y-6 = 0
We try to solve the equation: x+y-4 = 0
x+y-4 = 0 // - x-4
y = -(x-4)
y = 4-x
We insert the solution into one of the initial equations of our system of equations
We get a system of equations:
/| x+x-6-4 = 0| y = 4-x
2*x-10 = 0 // + 10
2*x = 10 // : 2
x = 10/2
x = 5
We insert the solution into one of the initial equations of our system of equations
For y = 4-x:
y = 4-5
y = -1
We get a system of equations:
/| y = -1| x = 5
Answer:
a. 0.6588
b. 0.3978
c. 0. 279
Step-by-step explanation:
In the given question the success and failure are given the number of outcomes is fixed so binomial distribution can be applied.
Here success= p = 12 % or 12/100 = 0.12
failure = q= 1-p = 1-0.12 = 0.88
n= 10
Using binomial probability distribution
a. Probability that the number of selected adults saying they were too young is 0 or 1 is calculated as:
P (x=0,1) = 0.12 ⁰(0.88)¹⁰10 C0 + 0.12 (0.88)⁹ 10 C1= 1* 0.279 * 1 + 0.12 ( 0.3165) 10 = 0. 279 + 0.3978= 0.6588
b. Probability that exactly one of the selected adults says that he or she was too young to get tattoos is calculated as
P (x=1) = 0.12 (0.88)⁹ 10 C1= 0.12 ( 0.3165) 10 = 0.3978
c. Probability that none of the selected adults say that they were too young to get tattoos is
P (x=0) = 0.12 ⁰(0.88)¹⁰10 C0 = 1* 0.279 * 1 = 0. 279