<span>Letter
C has the correct illustration. Two objects with the same charge (in this case,
both are positively charged) will repel each other. </span>
Letter
A is incorrect because a positive charged object will attract a negatively
charged object.
Letter
B is incorrect because both of them are negatively charged, which means they
should be repelling each other.
Answer:
In an atomizer, or perfume sprayer, you squeeze a rubber bulb to squirt air through a tube. Because of the Bernoulli principle, the air rushing through the tube has a lower pressure than the surrounding atmosphere. ... The perfume is pushed out of the tube and sprays into the air as a fine mist.
Explanation:
For the answer to the question above, first find out the gradient.
<span>m = rise/run </span>
<span>=(y2-y1)/(x2-x1) </span>
<span>the x's and y's are the points given: "After three hours, the velocity of the car is 53 km/h. After six hours, the velocity of the car is 62 km/h" </span>
<span>(x1,y1) = (3,53) </span>
<span>(x2,y2) = (6,62) </span>
<span>sub values back into the equation </span>
<span>m = (62-53)/(6-3) </span>
<span>m = 9/3 </span>
<span>m = 3 </span>
<span>now we use a point-slope form to find the the standard form </span>
<span>y-y1 = m(x-x1) </span>
<span>where x1 and y1 are any set of point given </span>
<span>y-53 = 3(x-3) </span>
<span>y-53 = 3x - 9 </span>
<span>y = 3x - 9 + 53 </span>
<span>y = 3x + 44 </span>
<span>y is the velocity of the car, x is the time.
</span>I hope this helps.
Answer:
Explanation:
magnitude: 180-50=130N
Direction: in the direction same as the second horizontal force