Answer:
Explanation:
The package had the same velocity as the plane when it was dropped. Newton's 1st Law says that "an object in motion tends to stay in motion, at the same velocity, in a straight line unless acted on by an outside force".
There only outside force acting on the package was its weight -- that force is straight down. The horizontal velocity that the plane gave the package continued (as Newton said it would), so as it fell, horizontally it kept pace with the plane.
Answer:
a = 7.5 m / s²
Explanation:
For this exercise let's use Newton's second law, let's create a coordinate system with the x axis parallel to the plane and the y axis perpendicular to the plane
Y axis
N - W cos θ = 0
N = mg cos θ
X axis
W sin θ = m a
mg sin θ = m a
a = g sin θ
let's calculate
a = 9.8 cos 40
a = 7.5 m / s²
Answer:
O²⁻
Explanation:
Number of protons = 8
Number of neutrons = 9
Number of electrons = 10
What type of atom or ion is it = ?
Solution:
Protons are the positively charged particle in an atom
Neutrons do not carry any charges
Electrons are negatively charged particles
For this atom, the number of protons helps to identify what specie it is; so this is an oxygen atom.
Now,
Charge = Number of protons - Number of electrons
Charge = 8 - 10 = -2
The charge on the atom is -2 and so it is an oxygen ion with -2 charge
The ion is O²⁻
Some metals having unpaired electrons contain a strong magnetic response, i.e, they can be magnetized by an external magnetic field.
Answer:
Explanation: Determine the gravitational acceleration. ...
Decide whether the object has an initial velocity. ...
Choose how long the object is falling. ...
Calculate the final free fall speed (just before hitting the ground) with the formula v = v₀ + gt