Answer:
the normal force that the wall exerts on the ball
Explanation:
As Newton's third law states:
"when an object A exerts a force on object B, then object B exerts an equal and opposite force on object A".
If we apply this law to this problem, we can identify the ball as object A, and the wall as object B. As the ball hits the wall, the ball exerts a force on the wall (toward the direction of motion of the ball), so the wall exerts an equal and opposite force on the ball (in the opposite direction). This force is the normal force of the wall, and it is responsible for pushing the ball back towards Erica.
The question is incomplete. The complete question is :
A viscoelastic polymer that can be assumed to obey the Boltzmann superposition principle is subjected to the following deformation cycle. At a time, t = 0, a tensile stress of 20 MPa is applied instantaneously and maintained for 100 s. The stress is then removed at a rate of 0.2 MPa s−1 until the polymer is unloaded. If the creep compliance of the material is given by:
J(t) = Jo (1 - exp (-t/to))
Where,
Jo= 3m^2/ GPA
to= 200s
Determine
a) the strain after 100's (before stress is reversed)
b) the residual strain when stress falls to zero.
Answer:
a)-60GPA
b) 0
Explanation:
Given t= 0,
σ = 20Mpa
Change in σ= 0.2Mpas^-1
For creep compliance material,
J(t) = Jo (1 - exp (-t/to))
J(t) = 3 (1 - exp (-0/100))= 3m^2/Gpa
a) t= 100s
E(t)= ΔσJ (t - Jo)
= 0.2 × 3 ( 100 - 200 )
= 0.6 (-100)
= - 60 GPA
Residual strain, σ= 0
E(t)= Jσ (Jo) ∫t (t - Jo) dt
3 × 0 × 200 ∫t (t - Jo) dt
E(t) = 0
Pour the entire components into water.
First the iron filings can be separated using a magnet as iron is a magnetic element.
By pouring the mixture into water, it allows the salt to dissolve in the water, while the sand will not.
Next we can run this solution through a filtration device to separate the sand from the water.
Now all that's left is to let the water evaporate so that the salt will be exposed that dissolved into the water.
26.2/3.4 would be the average velocity for the run.
7.7 miles/hr
Hahahahha ok it’s B or C or it B