Answer:
![\textbf{There are }33\tfrac{1}{3}\textbf{ liters of the 4}\%\textbf{ solution and }66\tfrac{2}{3}\textbf{ liters of the 10}\%\textbf{ solution.}](https://tex.z-dn.net/?f=%5Ctextbf%7BThere%20are%20%7D33%5Ctfrac%7B1%7D%7B3%7D%5Ctextbf%7B%20liters%20of%20the%204%7D%5C%25%5Ctextbf%7B%20solution%20and%20%7D66%5Ctfrac%7B2%7D%7B3%7D%5Ctextbf%7B%20liters%20of%20the%2010%7D%5C%25%5Ctextbf%7B%20solution.%7D)
Step-by-step explanation:
Let x represent the amount of 4% solution and y represent the amount of 10% solution.
⇒ x + y = 100 ..................(1)
x liters of the 4% solution gives us the expression 0.04·x
y liters of the 10% solution gives us the expression 0.10·y
100 L of the 8% solution gives us 0.08 × (100) = 8
⇒ 0.04·x + 0.10·y = 8 ...........(2)
This gives us the system of equations (1) and (2)
To solve this, we will use substitution.
Substituting x = 100 - y from equation (1) into equation (2). We get,
![y = 66\tfrac{2}{3}](https://tex.z-dn.net/?f=y%20%3D%2066%5Ctfrac%7B2%7D%7B3%7D)
Substitute this value of y into the first equation:
![x + 66\tfrac{2}{3} = 100\\\\\text{Subtract }66\tfrac{2}{3}\text{ from each side :}\\\\\implies x = 33\tfrac{1}{3}\\\\\textbf{Hence,There are }33\tfrac{1}{3}\textbf{ liters of the 4}\%\textbf{ solution and }66\tfrac{2}{3}\textbf{ liters of the 10}\%\textbf{ solution.}](https://tex.z-dn.net/?f=x%20%2B%2066%5Ctfrac%7B2%7D%7B3%7D%20%3D%20100%5C%5C%5C%5C%5Ctext%7BSubtract%20%7D66%5Ctfrac%7B2%7D%7B3%7D%5Ctext%7B%20from%20each%20side%20%3A%7D%5C%5C%5C%5C%5Cimplies%20x%20%3D%2033%5Ctfrac%7B1%7D%7B3%7D%5C%5C%5C%5C%5Ctextbf%7BHence%2CThere%20are%20%7D33%5Ctfrac%7B1%7D%7B3%7D%5Ctextbf%7B%20liters%20of%20the%204%7D%5C%25%5Ctextbf%7B%20solution%20and%20%7D66%5Ctfrac%7B2%7D%7B3%7D%5Ctextbf%7B%20liters%20of%20the%2010%7D%5C%25%5Ctextbf%7B%20solution.%7D)