-14x + 15y = 15
-14x + 14x + 15y = 14x + 15
15y = 14x + 15
15 15
y = ¹⁴/₁₅x + 1
-21x - 20y = -10
-21x - 20(¹⁴/₁₅x + 1) = -10
-21x - 20(¹⁴/₁₅x) - 20(1) = -10
-21x - 18²/₃x - 20 = -10
-39²/₃x - 20 = -10
+ 20 + 20
-39²/₃x = 10
-39²/₃ -39²/₃
x = ⁻³⁰/₁₁₉
y = ¹⁴/₁₅x + 1
y = ¹⁴/₁₅(⁻³⁰/₁₁₉) + 1
y = ⁻²⁸/₁₁₉ + 1
y = ⁹¹/₁₁₉
(x, y) = (⁻³⁰/₁₁₉, ⁹¹/₁₁₉)
Answer:
{2, 6, 14}
Step-by-step explanation:
Using f(x) = 4x + 6 with a domain of {-1, 0, 2 }, find the range.
To get the range, we will substitute the values of the domain into the given function as shown;
when x = -1
f(-1) = 4(-1)+6
f(-1) = -4+6
f(-1) = 2
when x = 0
f(0) = 4(0)+6
f(0) = 0+6
f(0) = 6
when x = 2
f(2) = 4(2)+6
f(2) = 8+6
f(2) = 14
Hence the required range are {2, 6, 14}
Answer:
0
Step-by-step explanation:
f(x) = 2/5(6 - x)²
f(6) = 2/5[6 - (6)]²
f(6) = 2/5(0)²
f(6) = 0