Answer:
The probability that the town has 30 or fewer residents with the illness = 0.00052.
Step-by-step explanation:
So, we have the following set of data or information or parameters given from the question above and they are; the number of people living in that particular society/community/town = 74,000 residents and the proportion of people that the diseases affected = .000215.
The first step to do is to determine the expected number of people with disease. Thus, the expected number of people with disease = 74,000 × .000215 = 15.91.
Hence, the probability that the town has 30 or fewer residents with the illness = 1.23 × 10^-7 × 15.91^30/ 2.65253 × 10^-32 = 0.00052.
Note the formula used in the calculating the probability that the town has 30 or fewer residents with the illness = e^-λ × λ^x/ x!
Pretty sure the distance is 8 units
Given that X <span>be the number of subjects who test positive for the disease out of the 30 healthy subjects used for the test.
The probability of success, i.e. the probability that a healthy subject tests positive is given as 2% = 0.02
Part A:
</span><span>The probability that all 30 subjects will appropriately test as not being infected, that is the probability that none of the healthy subjects will test positive is given by:
</span>

<span>
Part B:
The mean of a binomial distribution is given by
</span>

<span>
The standard deviation is given by:
</span>

<span>
Part C:
This test will not be a trusted test in the field of medicine as it has a standard deviation higher than the mean. The testing method will not be consistent in determining the infection of hepatitis.</span>
Answer: The ratio is 2.39, which means that the larger acute angle is 2.39 times the smaller acute angle.
Step-by-step explanation:
I suppose that the "legs" of a triangle rectangle are the cathati.
if L is the length of the shorter leg, 2*L is the length of the longest leg.
Now you can remember the relation:
Tan(a) = (opposite cathetus)/(adjacent cathetus)
Then there is one acute angle calculated as:
Tan(θ) = (shorter leg)/(longer leg)
Tan(φ) = (longer leg)/(shorter leg)
And we want to find the ratio between the measure of the larger acute angle and the smaller acute angle.
Then we need to find θ and φ.
Tan(θ) = L/(2*L)
Tan(θ) = 1/2
θ = Atan(1/2) = 26.57°
Tan(φ) = (2*L)/L
Tan(φ) = 2
φ = Atan(2) = 63.43°
Then the ratio between the larger acute angle and the smaller acute angle is:
R = (63.43°)/(26.57°) = 2.39
This means that the larger acute angle is 2.39 times the smaller acute angle.
Answer:
4
Step-by-step explanation:
On a number line you will got to -8 and go up 12 and you would get 4