Answer:
irrational numbers
Step-by-step explanation:
These types of numbers are known in mathematics as irrational numbers. This is because there is no way to truly rationalize these numbers as we cannot truly rationalize the meaning of infinity. These numbers keep going endlessly and there doesn't exist an end. One example of an irrational number is the value of Pi which we know as a simplified 3.14 but in reality, the value of Pi is endless. The first thousand places of Pi can be seen below
3.1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989
Answer:
The first question:
x = -1
Step-by-step explanation:
Step 1 :
Pulling out like terms :
1.1 Pull out like factors :
-x - 1 = -1 • (x + 1)
Equation at the end of step 1 :
Step 2 :
Solving a Single Variable Equation :
2.1 Solve : -x-1 = 0
Add 1 to both sides of the equation :
-x = 1
Multiply both sides of the equation by (-1) : x = -1
One solution was found :
x = -1
Processing ends successfully
plz mark me as brainliest :)
Answer:
let x adult and y student attended
x+y= 94
x=94-y
again
4x+2y = 294 53 adults and 41 student attended
376-4y+2y =294 the event
2y =82
y=41
substituting the value of y in
x+y =94
x= 94-41 = 53
Step-by-step explanation:
9514 1404 393
Answer:
m∠B < m∠A < m∠C
Step-by-step explanation:
We can work with the triangle inequality to find that the side measures form a triangle when n > 5/4. For the given value of n ≥ 4, we don't need to be concerned with whether a triangle is formed or not.
For n = 4, the side lengths are ...
a = 2(4) = 8
b = (4) +3 = 7
c = 3(4) -2 = 10
The longest side is opposite the largest angle, so the ordering of angles is ...
m∠B < m∠A < m∠C
_____
The triangle inequality requires all of these inequalities be true:
- a+b > c ⇒ 3n+3 > 3n-2 . . . always true
- b+c > a ⇒ 4n+1 > 2n ⇒ n > -1/2
- c+a > b ⇒ 5n-2 > n+3 ⇒ n > 5/4
That will be the case for n > 5/4. The attached graph shows the sides and angles keep the same order for n > 3.
Answer:
Step-by-step explanation:
It is conjectured that the Mandelbrot set is locally connected. This famous conjecture is known as MLC (for Mandelbrot locally connected). By the work of Adrien Douady and John H. Hubbard, this conjecture would result in a simple abstract "pinched disk" model of the Mandelbrot set. In particular, it would imply the important hyperbolicity conjecture mentioned above.
The work of Jean-Christophe Yoccoz established local connectivity of the Mandelbrot set at all finitely renormalizable parameters; that is, roughly speaking those contained only in finitely many small Mandelbrot copies.[19] Since then, local connectivity has been proved at many other points of {\displaystyle M}M, but the full conjecture is still open.