25 percent. in order to get only one face card you must get the ten and any other card. the probability of getting the 10 is 25 percent so that's the answe
Answer:
(-4,-2)
x=-4
y=-2
Step-by-step explanation:
-3x-4y=20
3(x-10y=16)=3x-30y=48
The reason I multiplied 3 to the second equation is for when we add the equations together the x will cancel out.
-3x-4y=20
+ <u>3x-30y=48</u>
-34y=68
Divide -34 from both sides.
y=-2
To find x you need to plug in -2 for y into one of the equations.
x-10y=16
x-10(-2)=16
Remember a negative times a negative equals a positive.
x+20=16
Subtract 20 from both sides.
x=-4
Hope this helps!
If not, I am sorry.
Answer:
D :)
Step-by-step explanation:
Answer:20
Step-by-step explanation:
8 is the number of edges so 8 mutiplyed by 2.5= 20
We begin with an unknown initial investment value, which we will call P. This value is what we are solving for.
The amount in the account on January 1st, 2015 before Carol withdraws $1000 is found by the compound interest formula A = P(1+r/n)^(nt) ; where A is the amount in the account after interest, r is the interest rate, t is time (in years), and n is the number of compounding periods per year.
In this problem, the interest compounds annually, so we can simplify the formula to A = P(1+r)^t. We can plug in our values for r and t. r is equal to .025, because that is equal to 2.5%. t is equal to one, so we can just write A = P(1.025).
We then must withdraw 1000 from this amount, and allow it to gain interest for one more year.
The principle in the account at the beginning of 2015 after the withdrawal is equal to 1.025P - 1000. We can plug this into the compound interest formula again, as well as the amount in the account at the beginning of 2016.
23,517.6 = (1.025P - 1000)(1 + .025)^1
23,517.6 = (1.025P - 1000)(1.025)
Divide both sides by 1.025
22,944 = (1.025P - 1000)
Add 1000 to both sides
23,944 = 1.025P
Divide both by 1.025 for the answer
$22,384.39 = P. We now have the value of the initial investment.