Answer:
20 hundredths
2 tenths equal 20 hundredths.
Hope this helps! :D
The answer is - 1 and 11/12.
Answer:
a) 50.34% probability that the arrival time between customers will be 7 minutes or less.
b) 24.42% probability that the arrival time between customers will be between 3 and 7 minutes
Step-by-step explanation:
Exponential distribution:
The exponential probability distribution, with mean m, is described by the following equation:

In which
is the decay parameter.
The probability that x is lower or equal to a is given by:

Which has the following solution:

The probability of finding a value higher than x is:

Mean of 10 minutes:
This means that 
A. What is the probability that the arrival time between customers will be 7 minutes or less?


50.34% probability that the arrival time between customers will be 7 minutes or less.
B. What is the probability that the arrival time between customers will be between 3 and 7 minutes?





24.42% probability that the arrival time between customers will be between 3 and 7 minutes
Answer:
Step-by-step explanation:uywegfywieflwef
efeerewer
werwer
wer
wer
werwer
tew
rt
To solve this problem you must apply the proccedure shown below:
1. You have the following expression given in the problem above:
![\sqrt[3]{216 x^{27} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B216%20x%5E%7B27%7D%20%7D%20)
2. Rewriting the expression we have:
![\sqrt[3]{6^3 x^{27} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B6%5E3%20x%5E%7B27%7D%20%7D%20)
3. You have that

and the exponent

are divisible by index

. Therefore, you have:
![\sqrt[3]{216 x^{27} } =6 x^{9}](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B216%20x%5E%7B27%7D%20%7D%20%3D6%20x%5E%7B9%7D%20)
Therefore, as you can see,
the answer is the option, which is: