Answer:
Step-by-step explanation:
a 10 ---10 asi b aritmetic a x2 b geometric
Answer:
We validate that the formula to determine the translation of the point to its image will be:
A (x, y) → A' (x+4, y-1)
Step-by-step explanation:
Given
A (−1, 4)→ A' (3, 3)
Here:
- A(-1, 4) is the original point
- A'(3, 3) is the image of A
We need to determine which translation operation brings the coordinates of the image A'(3, 3).
If we closely observe the coordinates of the image A' (3, 3), it is clear the image coordinates can be determined by adding 4 units to the x-coordinate and subtracting 1 unit to the y-coordinate.
Thue, the rule of the translation will be:
A(x, y) → A' (x+4, y-1)
Let us check whether this translation rule validates the image coordinates.
A (x, y) → A' (x+4, y-1)
Given that A(-1, 4), so
A (-1, 4) → A' (-1+4, 4-1) = A' (3, 3)
Therefore, we validate that the formula to determine the translation of the point to its image will be:
A (x, y) → A' (x+4, y-1)
Answer:
800 artículos.
Step-by-step explanation:
Sea x = la cantidad de artículos vendidos
De la pregunta,
Precio de costo = 60 x + 4000
Venta (precio de venta) = 80x
También nos dieron ganancias como S12000
Para determinar la ganancia
Precio de venta: precio de costo = beneficio (cuando el precio de venta es más alto que el precio de costo)
Por lo tanto,
12,000 = 80x - (60x + 4000)
12,000 = 80x - 60x - 4000
Recolectando términos similares
12,000 + 4,000 = 80x - 60x
16,000 = 20x
x = 16,000 / 20
x = 800
Por lo tanto, la cantidad de artículos que se venderán si desea obtener una ganancia de S12,000 es de 800 artículos.
The answer to the problem is 127
Answer:
And if we solve for a we got
The 95th percentile of the hip breadth of adult men is 16.2 inches.
Step-by-step explanation:
Let X the random variable that represent the hips breadths of a population, and for this case we know the distribution for X is given by:
Where
and
For this part we want to find a value a, such that we satisfy this condition:
(a)
(b)
We can find a quantile in the normal standard distribution who accumulates 0.95 of the area on the left and 0.05 of the area on the right it's z=1.64
Using this value we can set up the following equation:
And we have:
And if we solve for a we got
The 95th percentile of the hip breadth of adult men is 16.2 inches.