Answer:
The population changed by 20% in 3 years
Step-by-step explanation:
The percentage change, is given by the following equation;

The given parameters are;
The initial population of the town = 35,000
The final population of the town = 42,000
The percentage change in the population is therefore;

The population changed (increase) by 20% in 3 years.
Answer:

Step-by-step explanation:
Given

Now we know that system has infinite solution for x

in above equation.

∴
Answer:
Step-by-step explanation:
The mean SAT score is
, we are going to call it \mu since it's the "true" mean
The standard deviation (we are going to call it
) is

Next they draw a random sample of n=70 students, and they got a mean score (denoted by
) of 
The test then boils down to the question if the score of 613 obtained by the students in the sample is statistically bigger that the "true" mean of 600.
- So the Null Hypothesis 
- The alternative would be then the opposite 
The test statistic for this type of test takes the form

and this test statistic follows a normal distribution. This last part is quite important because it will tell us where to look for the critical value. The problem ask for a 0.05 significance level. Looking at the normal distribution table, the critical value that leaves .05% in the upper tail is 1.645.
With this we can then replace the values in the test statistic and compare it to the critical value of 1.645.

<h3>since 2.266>1.645 we can reject the null hypothesis.</h3>
Answer:
0.384
Step-by-step explanation:
pet supplier has a stock of parakeets of which 20% are blue parakeets
20/100 = 0.2 blue parakeets (success)
1-0.2 = 0.8 not parakeets (not success)
A pet store orders 3 parakeets from this supplier
we need to find the chance of getting exactly one blue from 3 parakeets

n=3, r=1, p = 0.2 , q=0.8

0.384
Responder:
26,62
Explicación paso a paso:
Sea x el dinero original que tenía el jugador:
si un jugador pierde en su primer juego el 30% de su dinero, la cantidad perdida será;

Si en el segundo juego pierde el 50% de lo que perdió, entonces la cantidad perdida en el segundo juego será:

Si en el tercer juego pierde el 40% de todo lo que ha perdido, la cantidad perdida en el tercer juego será:

Si la cantidad que le queda para seguir apostando es de 37 soles, entonces para calcular la cantidad original que tiene, sumaremos toda la cantidad perdida y la cantidad restante y equipararemos la cantidad original x como se muestra:
0,3x + 0,15x + 0,2025x + 37 = x
0,6525x + 37 = x
x-0,6525x = 37
0,3475x = 37
x = 37 / 0,3475
x = 106,48
La cantidad que tenía originalmente era de 106,48
75% de 106,48
= 75/100 * 106,48
= 0,75 * 106,48
= 79,86
Tomando la diferencia entre su monto original y su 75% será:
