The missing value is 12 in a system of equations with infinitely many solutions conditions.
It is given that in the system of equations there are two equations given:

It is required to find the missing value in the second equation.
<h3>What is a linear equation?</h3>
It is defined as the relation between two variables if we plot the graph of the linear equation we will get a straight line.
We have equations:

Let's suppose the missing value is 'Z'
We know that the two pairs of equations have infinitely many solutions if and if they have the same coefficients of variables and the same constant on both sides.
From equation (1)
(multiply both the sides by 3)
...(3)
By comparing the equation (2) and (3), we get
M = 12
Thus, the missing value is 12 in a system of equations with infinitely many solutions conditions.
Learn more about the linear equation.
brainly.com/question/11897796
B is the answer because if u subtact both x and y
Answer:
-3+x=x+4
Step-by-step explanation:
Pls Mark Brainliest
Answer:
In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph.
In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is undirected, the adjacency matrix is symmetric. The relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph theory.
The adjacency matrix should be distinguished from the incidence matrix for a graph, a different matrix representation whose elements indicate whether vertex–edge pairs are incident or not, and degree matrix which contains information about the degree of each vertex.
The formula to calculate the experimental probability is "P(event) = Number of times event occurs/total number of trials"
The expiramental probability should be the fraction "21/47"
The theoretical probability should be the fraction "1/3" because the formula for theoretical probability is the number of favorable outcomes (5 dollar bill) over the total number of possible outcomes (10-dollar bill, one dollar bill, & 5 dollar bill). therefore, there is 1 favorable outcome, and 3 possible outcomes = 1/3.