Answer:
- The function f(x) = 9,000(0.95)^x represents the situation.
- After 2 years, the farmer can estimate that there will be about 8,120 bees remaining.
- The range values, in the context of the situation, are limited to whole number
Step-by-step explanation:
The "growth" rate is -5%, so the growth factor, the base in the exponential equation, is 1.00-5% =0.95.
Using x=2, we find the population in 2 years is expected to be about ...
f(2) = 9000·0.95^2 ≈ 8123 . . . . about 8120
Using x=4, we find the population in 4 years is expected to be about ...
f(4) = 9000·0.95^4 ≈ 7331 . . . . about 7330
Since population is whole numbers of bees, the range of the function is limited to whole numbers.
The domain of the function is numbers of years. Years can be divided into fractions as small as you want, so the domain is not limited to whole numbers.
The choices listed above are applicable to the situation described.
To find the maximum or minimum value of a function, we can find the derivative of the function, set it equal to 0, and solve for the critical points.
H'(t) = -32t + 64
Now find the critical numbers:
-32t + 64 = 0
-32t = -64
t = 2 seconds
Since H(t) has a negative leading coefficient, we know that it opens downward. This means that the critical point is a maximum value rather than a minimum. If we weren't sure, we could check by plugging in a value for t slightly less and slighter greater than t=2 into H'(t):
H'(1) = 32
H'(3) = -32
As you can see, the rate of change of the object's height goes from increasing to decreasing, meaning the critical point at t=2 is a maximum.
To find the height, plug t=2 into H(t):
H(2) = -16(2)^2 +64(2) + 30 = 94
The answer is 94 ft at 2 sec.
Equal to is under is fewer has maximum value is over is at most
Answer:
point slope form: y - 1 = 4 (x -2)
slope intercept form: y = 4x -7
Step-by-step explanation:
If you want it in point slope form it would be: y - 1 = 4 (x -2)
but if you want it in slope intercept form, you solve this equation
y -1 = 4 (x-2)
y-1 = 4x -8
+1 +1
y = 4x -7 in slope intercept form