Answer:
<h2>(-1, -3)</h2>
Step-by-step explanation:
Vertex of y = |x| have the coordinates (0, 0).
f(x) + n - shift the graph n units up
f(x) - n - shift the graph n units down
f(x + n) - shift the graph n units to the left
f(x - n) - shift the graph n units to the right
nf(x) - stretches/shrinks vertically
f(nx) - stretches/shrinks horizontally
We have
f(x) = |8x + 8| - 3 = |8(x + 1)| - 3 = |8| · |x+1| - 3 = 8|x + 1| - 3
g(x) = |x| → f(x) = 8g(x + 1) - 3
vertically streched by 8 (0, 8 · 0) → (0, 0)
shifted 1 unit to the left (0 - 1, 0) → (-1, 0)
shifted 3 units down (-1, 0 - 3) → (-1, -3)