Answer:
5/8
5/8
Step-by-step explanation:
This seems to be referring to a particular construction of the perpendicular bisector of a segment which is not shown. Typically we set our compass needle on one endpoint of the segment and compass pencil on the other and draw the circle, and then swap endpoints and draw the other circle, then the line through the intersections of the circles is the perpendicular bisector.
There aren't any parallel lines involved in the above described construction, so I'll skip the first one.
2. Why do the circles have to be congruent ...
The perpendicular bisector is the set of points equidistant from the two endpoints of the segment. Constructing two circles of the same radius, centered on each endpoint, guarantees that the places they meet will be the same distance from both endpoints. If the radii were different the meets wouldn't be equidistant from the endpoints so wouldn't be on the perpendicular bisector.
3. ... circles of different sizes ...
[We just answered that. Let's do it again.]
Let's say we have a circle centered on each endpoint with different radii. Any point where the two circles meet will then be a different distance from one endpoint of the segment than from the other. Since the perpendicular bisector is the points that are the same distance from each endpoint, the intersection of circles with different radii isn't on it.
4. ... construct the perpendicular bisector ... a different way?
Maybe what I first described is different; there are no parallel lines.
Answer:
related injuries treated in hospital emergency departments using data from ... fireworks-related, emergency department-treated injuries for 2019 occurred during that period. ... of the deaths were associated with misuse of fireworks, 2 deaths were ... victims who reported that their injuries may be long term.
Step-by-step explanation:
Answer: Emmet bought 94 more cans of cat food than dog food.
Step-by-step explanation:
Answer:
They have the same slope
Step-by-step explanation:
The standard equation of a line in point-slope form is expressed as;
y-y0 = m(x-x0)
We can see that both equations given are written in this form with a slope of 1.2. For two lines to be equal, they must have the same slope no matter the point on the lines. Hence the two equations are equal since they have different slopes.