An interval over which the function, f(x) = -2x³ - 3x +5 is guaranteed to have a zero is [0,2]
<h3>Further explanation</h3>
<em>If equation ax³ + bx² + cx + d = 0 has roots x₁ , x₂ , and x₃ then</em>
![x_1 + x_2 + x_3 = - \frac{b}{a}](https://tex.z-dn.net/?f=x_1%20%2B%20x_2%20%2B%20x_3%20%3D%20-%20%5Cfrac%7Bb%7D%7Ba%7D)
![x_1 x_2 + x_1 x_3 + x_2 x_3 = \frac{c}{a}](https://tex.z-dn.net/?f=x_1%20x_2%20%2B%20x_1%20x_3%20%2B%20x_2%20x_3%20%3D%20%5Cfrac%7Bc%7D%7Ba%7D)
![x_1 x_2 x_3 = - \frac{d}{a}](https://tex.z-dn.net/?f=x_1%20x_2%20x_3%20%3D%20-%20%5Cfrac%7Bd%7D%7Ba%7D)
Let us now tackle the problem!
![\texttt{ }](https://tex.z-dn.net/?f=%5Ctexttt%7B%20%7D)
Given:
![f(x) = -2x^3 - 3x + 5](https://tex.z-dn.net/?f=f%28x%29%20%3D%20-2x%5E3%20-%203x%20%2B%205)
<h2>Option A:</h2>
![f(x) = -2x^3 - 3x + 5](https://tex.z-dn.net/?f=f%28x%29%20%3D%20-2x%5E3%20-%203x%20%2B%205)
![f(-3) = -2(-3)^3 - 3(-3) + 5 = 68](https://tex.z-dn.net/?f=f%28-3%29%20%3D%20-2%28-3%29%5E3%20-%203%28-3%29%20%2B%205%20%3D%2068)
![f(-2) = -2(-2)^3 - 3(-2) + 5 = 27](https://tex.z-dn.net/?f=f%28-2%29%20%3D%20-2%28-2%29%5E3%20-%203%28-2%29%20%2B%205%20%3D%2027)
<em>Because both of the value of f(-3) and f(-2) are positive , we cannot guarateed the value of the function will be zero at interval [-3,-2]</em>
![\texttt{ }](https://tex.z-dn.net/?f=%5Ctexttt%7B%20%7D)
<h2>Option B:</h2>
![f(x) = -2x^3 - 3x + 5](https://tex.z-dn.net/?f=f%28x%29%20%3D%20-2x%5E3%20-%203x%20%2B%205)
![f(0) = -2(0)^3 - 3(0) + 5 = 5](https://tex.z-dn.net/?f=f%280%29%20%3D%20-2%280%29%5E3%20-%203%280%29%20%2B%205%20%3D%205)
![f(-2) = -2(-2)^3 - 3(-2) + 5 = 27](https://tex.z-dn.net/?f=f%28-2%29%20%3D%20-2%28-2%29%5E3%20-%203%28-2%29%20%2B%205%20%3D%2027)
<em>Because both of the value of f(0) and f(-2) are positive , we cannot guarateed the value of the function is zero at interval [-3,-2]</em>
![\texttt{ }](https://tex.z-dn.net/?f=%5Ctexttt%7B%20%7D)
<h2>Option C:</h2>
![f(x) = -2x^3 - 3x + 5](https://tex.z-dn.net/?f=f%28x%29%20%3D%20-2x%5E3%20-%203x%20%2B%205)
![f(0) = -2(0)^3 - 3(0) + 5 = 5](https://tex.z-dn.net/?f=f%280%29%20%3D%20-2%280%29%5E3%20-%203%280%29%20%2B%205%20%3D%205)
![f(2) = -2(2)^3 - 3(2) + 5 = -17](https://tex.z-dn.net/?f=f%282%29%20%3D%20-2%282%29%5E3%20-%203%282%29%20%2B%205%20%3D%20-17)
<em>Because the value of f(0) and f(2) have different sign , we can guarateed the value of the function will be zero at interval [0,2] , i.e. there is zero between 5 and -17 → -17 < 0 < 5</em>
![\texttt{ }](https://tex.z-dn.net/?f=%5Ctexttt%7B%20%7D)
<h2>Option D:</h2>
![f(x) = -2x^3 - 3x + 5](https://tex.z-dn.net/?f=f%28x%29%20%3D%20-2x%5E3%20-%203x%20%2B%205)
![f(4) = -2(4)^3 - 3(4) + 5 = -135](https://tex.z-dn.net/?f=f%284%29%20%3D%20-2%284%29%5E3%20-%203%284%29%20%2B%205%20%3D%20-135)
![f(2) = -2(2)^3 - 3(2) + 5 = -17](https://tex.z-dn.net/?f=f%282%29%20%3D%20-2%282%29%5E3%20-%203%282%29%20%2B%205%20%3D%20-17)
<em>Because both of the value of f(4) and f(2) are negatve , we cannot guarateed the value of the function is zero at interval [2,4]</em>
![\texttt{ }](https://tex.z-dn.net/?f=%5Ctexttt%7B%20%7D)
<h3>Learn more</h3>
<h3>Answer details</h3>
Grade: High School
Subject: Mathematics
Chapter: Polynomial
Keywords: Quadratic , Equation , Discriminant , Real , Number