B. By mutating their DNA in response to environmental conditions to gain beneficial traits.
Answer:
1. CGAGGTT → CGTT (Deletion)
2. ATTCGG → ATTCGGATTCGG (Duplication)
3. CTTAAT → TAATTC (Inversion)
4. CTTAAT → CTTAACGCT (Insertion)
5. CGAT → CTAT (Substitution)
6. CCGGTT + TTAGGC = CCGTTA + GTTGGC (Translocation)
Explanation:
1. CGAGGTT → CGTT (Deletion) ---- This is called deletion because it involves the removal of 3 base pairs (AGG) from the DNA sequence.
2. ATTCGG → ATTCGGATTCGG (Duplication) ---- In this case, the particular sequence (ATTCGG) is copied again or duplicated.
3. CTTAAT → TAATTC (Inversion)----- This is called inversion mutation because the DNA sequence breaks off and is reattached but this time in a reverse order i.e. CTT becomes TTC, placing the last base first and the first base last.
4. CTTAAT → CTTAACGCT (Insertion) ------ This is called insertion mutation because it involves the addition of extra base pairs (CGC) into the sequence. The Insertion occurs between the last A and T nucleotide.
5. CGAT → CTAT (Substitution) ----- This is called substitution because Guanine base is replaced by Thymine in the DNA sequence. It is specifically called a transversion substitution because a purine (Guanine) is replaced by a pyrimidine (Thymine). It is called a point mutation because it involves a single base.
6. CCGGTT + TTAGGC = CCGTTA + GTTGGC (Translocation) ----- in this case, CCGGTT and TTAGGC are sequences on different chromosomes. Portions of sequence on the first chromosome (GTT) and second chromosome (TTA) breaks off and gets reattached/exchanged in each other i.e. the first chromosome gets TTA while the second gets GTT. This kind of mutation is called translocation.
Answer:
Explain how the daily energy needs are different between the zebra and its predator, the lion. Be certain to include any pertinent differences in the digestibility of these organisms’ food sources, along with differences in digestive tracts and energy spent on digesting. Cite any behaviors you feel may play a role as well.
Answer: 20 amino acids
Explanation: The 20 amino acids that are found within proteins convey a vast array of chemical versatility. The precise amino acid content, and the sequence of those amino acids, of a specific protein, is determined by the sequence of the bases in the gene that encodes that protein.
<span>C. Several billion,,,,,,,,,,,,,,,,,,,,,</span>