Answer:
Molar heat of solution of KBr is 20.0kJ/mol
Explanation:
Molar heat of solution is defined as the energy released (negative) or absorbed (Positive) per mole of solute being dissolved in solvent.
The dissolution of KBr is:
KBr → K⁺ + Br⁻
In the calorimeter, the temperature decreases 0.370K, that means the solution absorbes energy in this process. The energy is:
q = 1.36kJK⁻¹ × 0.370K
q = 0.5032kJ
Moles of KBr in 3.00g are:
3.00g × (1mol / 119g) = 0.0252moles
Thus, molar heat of solution of KBr is:
0.5032kJ / 0.0252moles = <em>20.0kJ/mol</em>
Nitrogen trichloride is the name of this compound
<span>In the formation of a solution,
energy is required to overcome the forces of attraction between the solvent
particles. The first step is for the solvent particles to move in order for
solute particles to enter the system. This process is endothermic where energy
flows into the system. The second step is when solute particles must separate
from other solute particles. Lastly, the solute should move between solvent
particles.</span>
The more acidic the substance is, the more the iron nails will corrode (this obviously depends on what your experiment is but hope this helped in some way)
<h3>
Answer:</h3>
498 kj/mol
<h3>
Explanation:</h3>
- Chemical reactions occur as a result of bond breaking and bond formation.
- The bonds in reactants are broken and atoms are rearranged to form new bonds.
- During bond breaking energy is absorbed to break the bonds of reactants while bond formation involves the release of energy during the formation of new bonds.
In our case;
In 1 mole of the Oxygen molecule, there is one O=O bond
Energy absorbed to break O=O is 498 kJ/mol
Therefore, the ΔH required to break all the bonds in one mole of Oxygen(O₂) molecules is 498kJ/mol.
Note that, bond breaking is endothermic since energy is absorbed from the surroundings.