The anwser should be B. Nonrenewable resources generally have a higher impact on the environmental than renewable resources.
D) the earthworm measurement is accurate because moore subtracted the beginning and ending points from the ruler
Answer:
(A) It prevents electron flow from the iron-sulfur centers in complex 1 to the ubiquinone. Due to reduction in electron transfer rate, there is a decrease in the production of ATP which is dangerous for some insects and fish over time.
(B) It also prevents electron flow from cytochrome b to cytochrome c1 at the complex III which leads to QH2 accumulation. If oxidized Q is not present, these is alteration of electron flow and the production of ATP is altered.
(C) Rotenone only prevent electron transfer into the chain at Complex 1 but it does not affect electron transfer at Complex II. Although there is slow ETC, it does not stop completely. However, Antimycin A prevents the oxidation of QH2, the final electron acceptor crom complex I and complex II. Thereby, stopping the production of both ETC and ATP. It can be concluded that antimycin A is a more potent poison.
Explanation:
Rotenone prevents electron flow from the iron-sulfur centers in complex 1 to the ubiquinone. Due to a reduction in electron transfer rate, there is a decrease in the production of ATP which is dangerous for some insects and fish over time. Antimycin A also prevents electron flow from cytochrome b to cytochrome c1 at the complex III which leads to QH2 accumulation. If oxidized Q is not present, there is an alteration of electron flow and the production of ATP is altered. Antimycin A is more potent than rotenone.
CH2O5 +603-6CO2 + 6H2O + energy isn't the evidence of conservation of mass in cellular respiration.
Option B
<h3><u>Explanation:</u></h3>
Law of conservation of mass states that mass can neither be created nor be destroyed. And this law holds good for all sorts of chemical reactions except the nuclear reactions.
In case of cellular respiration, one molecule of glucose reacts with 6 molecules of oxygen to produce 6 molecules of carbon dioxide and 6 molecules of water and energy. Now this energy that is produced isn't produced in expense of mass, but in expense of chemical bonds that are present in glucose molecules.
Also if we calculate the number of atoms on each side of the reaction, the number of atoms remain same as well as number of atoms of individual elements also remain same.
I can’t see it it’s too blurry