<span>Binomial Problem with n = 50 and P(op) = 0.0.7
P(31<=50) = 1 - P(0<=x<=30) = 1 - binomcdf(50,0.7,30) = 1-0.0848 = 0.9152
</span>
Answer:
c = -6
d = 2
Step-by-step explanation:
After reflection about the x-axis:
A --> A'
(2,3) --> (2,-3)
(4,3) --> (4,-3)
(2,6) --> (2,-6)
After translation:
(2 + c, -6 + d) --> (-4, -4)
2+c = -4
c = -6
-6+d = -4
d = 2
Answer:
C. Test for Goodness-of-fit.
Step-by-step explanation:
C. Test for Goodness-of-fit would be most appropriate for the given situation.
A. Test Of Homogeneity.
The value of q is large when the sample variances differ greatly and is zero when all variances are zero . Sample variances do not differ greatly in the given question.
B. Test for Independence.
The chi square is used to test the hypothesis about the independence of two variables each of which is classified into number of attributes. They are not classified into attributes.
C. Test for Goodness-of-fit.
The chi square test is applicable when the cell probabilities depend upon unknown parameters provided that the unknown parameters are replaced with their estimates and provided that one degree of freedom is deducted for each parameter estimated.
Adiya’s method is not correct. To form a perfect square trinomial, the constant must be isolated on one side of the equation. Also, the coefficient of the term with an exponent of 1 on the variable is used to find the constant in the perfect square trinomial. Adiya should first get the 20x term on the same side of the equation as x2. Then she would divide 20 by 2, square it, and add 100 to both sides.
Answer:
-4g^4 -3g^3 + 4g^2 +5g +3
Step-by-step explanation:
g^2 + -4g^4 +5g +9 -3g^3 + 3g^2 -6
-4g^4 -3g^3 + 4g^2 +5g +3