<span>I'm pretty sure it because of chemical change. :) Hope this helps!</span>
Answer:
two oxygen atoms
Explanation:
One mole of oxygen gas, which has the formula O2, has a mass of 32 g and contains 6.02 X 1023 molecules of oxygen but 12.04 X 1023 (2 X 6.02 X 1023) atoms, because each molecule of oxygen contains two oxygen atoms.
Earth's outer core is a fluid layer about 2,400 km (1,500 mi) thick and composed of mostly iron and nickel that lies above Earth's solid inner core and below its mantle. Its outer boundary lies 2,890 km (1,800 mi) beneath Earth's surface. ... Unlike the inner (or solid) core, the outer core is liquid.
Answer:
Answer. Answer: Nitrogen (N), antimony (Sb), bismuth (Bi) is the order from least conductive to most conductive.
<h3>
Answer:</h3>
69.918 g
<h3>
Explanation:</h3>
<u>We are given;</u>
- Mass of iron oxide as 100 g
We are supposed to determine the maximum theoretical yield of Iron from the blast furnace;
- The equation for the reaction in the blast furnace that extracts Iron from iron oxide is given by;
Fe₂O₃ + 3CO → 2Fe + 3CO₂
- We can first determine moles of Iron oxide;
Moles = Mass ÷ Molar mass
Molar mass of Fe₂O₃ = 159.69 g/mol
Therefore;
Moles of Fe₂O₃ = 100 g ÷ 159.69 g/mol
= 0.626 moles
- Then we determine moles of Iron produced
From the equation;
1 mole of Fe₂O₃ reacts to produce 2 moles of Fe
Therefore;
Moles of Fe = Moles of Fe₂O₃ × 2
= 0.626 moles × 2
= 1.252 moles
- Maximum theoretical mass of Iron that can be obtained
Mass = Moles × molar mass
Molar mass of Fe = 55.845 g/mol
Therefore;
Mass of Fe = 1.252 moles × 55.845 g/mol
= 69.918 g
Therefore, the maximum theoretical mass of Iron metal obtained is 69.918 g