1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andreyy89
3 years ago
13

5.006 as a fraction in simplest form

Mathematics
2 answers:
VladimirAG [237]3 years ago
5 0

Answer:

5 3/500

Step-by-step explanation:

Elena L [17]3 years ago
3 0

Answer:

2503/500

Step-by-step explanation:

You have to turn it into a fraction like 5.006/1 then you multiply by 10 until the numerator is a whole number.

1)  5.006/1

2)  50.06/10

3)  500.6/100

4)  5006/1000

5)  Simplify:    2503/500

You might be interested in
Simplify the expression .
katovenus [111]

10xy^2(3x^3-5x)-2x^2y(6y^3+3y)=\\\\=30x^4y^2-50x^2y^2-12x^3y^4-6x^2y^2=\\\\=\boxed{30x^4y^2-12x^3y^4-56x^2y^2}

3 0
2 years ago
Francisco spent 25 minutes on the internet yesterday is this is 5/6 of the time she spent on the computer how long did she spend
m_a_m_a [10]
30 minutes. the easiest way is to use the opposite of the fraction.  divide 25 / 5= 5. now multiply by 6. 5*6= 30.
7 0
3 years ago
Simplify the following expression as a monomial<br><br> X^2y÷yx^2
Novay_Z [31]

\bf ~\hspace{7em}\textit{negative exponents}&#10;\\\\&#10;a^{-n} \implies \cfrac{1}{a^n}&#10;~\hspace{4.5em}&#10;a^n\implies \cfrac{1}{a^{-n}}&#10;~\hspace{4.5em}&#10;\cfrac{a^n}{a^m}\implies a^na^{-m}\implies a^{n-m}&#10;\\\\[-0.35em]&#10;\rule{34em}{0.25pt}\\\\&#10;x^2\div yx^2\implies \cfrac{x^2}{yx^2}\implies \cfrac{x^2\cdot x^{-2}}{y}\implies \cfrac{x^{2-2}}{y}\implies \cfrac{x^0}{y}\implies \cfrac{1}{y}

8 0
2 years ago
Evaluate the limit
wel

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

3 0
2 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B686x%5E4%20y%5E7%7D" id="TexFormula1" title="\sqrt[3]{686x^4 y^7}" alt="\sqrt
Sergio [31]
This answer is there in picture

5 0
3 years ago
Other questions:
  • A line has a slope of-1 and passes through the point (1, -8) .What is its equation in slope -intercept form?
    9·1 answer
  • Solve : 4+3x =(3x-7)+9.
    11·2 answers
  • (6y^2-9y+4)-(-7y^2+5y+1)
    7·1 answer
  • It said I would level up from Ambitious on brainly, and I haven't. It said I would when I get 5 brainliest, and 500 points. But,
    13·2 answers
  • Which is an equivalent form of the equation 3x-3y=15
    8·2 answers
  • A store is having a sale on trail mix and jelly beans. For 2 pounds of trail mix and 3 pounds of jelly beans, the total cost is
    10·1 answer
  • Will give brainliest foe correct answer
    8·1 answer
  • What’s the area of the figure below?
    15·2 answers
  • How many solutions will the system of equations have? System: y = 2x + 2 and y = x + 4
    8·1 answer
  • An equation is shown below: 2(7x − 3) = 9 Which of the following correctly shows the beginning steps to solve this equation? (4
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!