Answer:

Step-by-step explanation:
Given




Required
Determine the probability of 1 orange, 1 apple and 1 banana
Since, order is not important:


<em>The difference in the numerator is as a result of picking the fruit without replacement</em>


Let us make a list of all the details we have
We are given
The cost of each solid chocolate truffle = s
The cost of each cream centre chocolate truffle = c
The cos to each chocolate truffle with nuts = n
The first type of sweet box that contains 5 each of the three types of chocolate truffle costs $41.25
That is 5s+5c+5n = 41.25 (cost of each type of truffle multiplied by their respective costs and all added together)
The second type of sweet box that contains 10 solid chocolate trufles, 5 cream centre truffles and 10 chocolate truffles with nuts cost $68.75
That is 10s+5c+10n = $68.75
The third type of sweet box that contains 24 truffles evenly divided that is 12 each of solid chocolate truffle and chocolate truffle with nuts cost $66.00
That is 12s+12n=$66.00
Hence option C is the right set of equations that will help us solve the values of each chocolate truffle.
Answer:
11.3353
Step-by-step explanation:
please mark me brainliest.
I am begging
Answer:
98 ft²
Step-by-step explanation:
There are a couple of ways you can think about this one. Perhaps easiest is to treat it as a square with a triangle cut out of it. The cutout triangle has a base (across the top) of 14 ft and a height of 14 ft, so its area is ...
A = (1/2)(14 ft)(14 ft) = 98 ft²
Of course the area of the square from which it is cut is ...
A = (14 ft)² = 196 ft²
So, the net area of the two triangles shown is ...
A = (196 ft²) - (98 ft²) = 98 ft²
_____
Another way to work this problem is to attack it directly. Let the base of the left triangle be x. Then the base of the right triangle is 14-x, and their total area is ...
A = A1 + A2 = (1/2)(x ft)(14 ft) + (1/2)((14-x) ft)(14 ft)
We can factor out 7 ft to get ...
A = (7 ft)(x ft + (14 -x) ft)
A = (7 ft)(14 ft) = 98 ft²