Answer:
equation is 45+2.00t. the price of 350 tickets would be 700... but the total cost is 745
If i understand this correctly, it should be (M,L)
Answer:
<u>Option C. It is zero</u>
Step-by-step explanation:
The graph represents a quadratic equation
The quadratic equation has the form ⇒a x² + b x + c
The discriminant of the quadratic equation is D = b² - 4ac
From the discriminant of the quadratic equation, we can know the type of roots of the quadratic equation.
- If D > 0 ⇒ Two real roots.
- If D = 0 ⇒ one real roots
- If D < 0 ⇒ Two imaginary roots.
The roots of the quadratic equation are the x-intercepts of the function.
As shown at the figure, the quadratic equation has only one point of intersection with the x-axis
So, the function has only one root ⇒ D = 0
So, the discriminant of the quadratic equation = 0
<u>The answer is option C. It is zero</u>
Answer:
60 minutes
Step-by-step explanation:
Let the number of minutes be represented as x
For Plan A
Plan A charges $35 plus $0.25 per minute for calls.
$35 + $0.25 × x
35 + 0.25x
For Plan B
Plan B charges $20 plus $0.50 per minute for calls.
$20 + $0.50 × x
20 + 0.50x
For what number of minutes do both plans cost the same amount?
This is calculated by equating Plan A to Plan B
Plan A = Plan B
35 + 0.25x = 20 + 0.50x
Collect like terms
35 - 20 = 0.50x - 0.25x
15 = 0.25x
x = 15/0.25
x = 60 minutes.
Hence, the number of minutes that both plans cost the same amount is 60 minutes
Answer:
No solution
Step-by-step explanation: