If you are asking which is bigger then it is 4/6
Answer:
a)
And we can find this probability with the complement rule:
b) 
And if we use the z score we got:
Step-by-step explanation:
Let X the random variable that represent the lengths of a population, and for this case we know the distribution for X is given by:
Where
and
Part a
We are interested on this probability
And we can use the z score formula given by:
And using this formula we got:
And we can find this probability with the complement rule:
Part b
For this case we select a sample of n =44 and the new z score formula is given by:

And if we find the z score we got:

And if we use the z score we got:
]Eigenvectors are found by the equation

implying that

. We then can write:
And:
Gives us the characteristic polynomial:

So, solving for each eigenvector subspace:
![\left [ \begin{array}{cc} 4 & 2 \\ 5 & 1 \end{array} \right ] \left [ \begin{array}{c} x \\ y \end{array} \right ] = \left [ \begin{array}{c} -x \\ -y \end{array} \right ]](https://tex.z-dn.net/?f=%5Cleft%20%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%204%20%26%202%20%5C%5C%205%20%26%201%20%5Cend%7Barray%7D%20%5Cright%20%5D%20%5Cleft%20%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20x%20%5C%5C%20y%20%5Cend%7Barray%7D%20%5Cright%20%5D%20%3D%20%5Cleft%20%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20-x%20%5C%5C%20-y%20%5Cend%7Barray%7D%20%5Cright%20%5D%20)
Gives us the system of equations:
Producing the subspace along the line

We can see then that 3 is the answer.
<span>A quarter of the marbles are red, so there are 124/4 = 31 red marbles. The rest are blue, so there are 124 - 31 = 93 blue marbles.</span>
Answer:
is the answer is 1.07 to 7.0
Step-by-step explanation: