Answer:
The first 2 and the last one
Step-by-step explanation:
You need to have an input per output, and to choose one or multiple the need to have a continuous pattern. Ex.+5 ad -2 on both sides every time would be a linear function.
Answer:
1/3
Step-by-step explanation:
When working with balanced expressions (stuff on both sides of the equal sign), "what you do to one side, you do to the other", which keeps it balanced.
The first thing we notice is the exponent 1/4, which is one both sides, so we can get rid of it on both sides by using the <u>reverse operation</u>.
The reverse of exponents is <u>square root</u>.
![(4x + 10)^{\frac{1}{4}} = (9 + 7x)^{\frac{1}{4}}\\\sqrt[\frac{1}{4}]{(4x + 10)^{\frac{1}{4}}} = \sqrt[\frac{1}{4}]{(9 + 7x)^{\frac{1}{4}}}\\\\4x + 10 = 9 + 7x](https://tex.z-dn.net/?f=%284x%20%2B%2010%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%20%3D%20%289%20%2B%207x%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5C%5C%5Csqrt%5B%5Cfrac%7B1%7D%7B4%7D%5D%7B%284x%20%2B%2010%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%7D%20%3D%20%5Csqrt%5B%5Cfrac%7B1%7D%7B4%7D%5D%7B%289%20%2B%207x%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%7D%5C%5C%5C%5C4x%20%2B%2010%20%3D%209%20%2B%207x)
Isolate x to solve. Separate the variables and non-variables.
4x + 10 = 9 + 7x
4x - 4x + 10 = 9 + 7x - 4x Subtract 4x from both sides
10 = 9 + 3x
10 - 9 = 9 - 9 + 3x Subtract 9 from both sides
1 = 3x Divide both sides by 3 to isolate x
x = 1/3 Answer
Answer:
1000÷50%=2000
Step-by-step explanation:
hope it helps