Answer:
variability and stay the same
Step-by-step explanation:
please give your full name
For the experiment, you need 2L of cola. Your first option would be to purchase 1 2L bottle of cola for $2.25.
To calculate the second option, let's convert milliliters to liters first. There are 1,000 milliliters in 1 liter. With this, we know that there are 2,000 milliliters in 2 liters. Option 2 comes in 500-milliliter cans, which means that you would need 4 of them (2,000/500 = 4). 4 cans multiplied by $0.50 would cost you $2.00.
Let's check the cost of your answer options.
A. 4 cans - As seen above, this would cost $2.00.
B. 1 bottle - From the question, we know this would cost $2.25.
C. 2 bottles - This would be more soda than you need and would cost $4.50 ($2.25x2)
D. 1 can - This would be .5L and not enough soda for the experiment.
E. 5 cans - This would cost $2.50, but would be an extra 500mL of soda.
F. 2 cans - This would only be 1L of soda and not enough for the experiment.
G. 3 cans - This would be 1.5L of soda and not enough for the experiment either.
For the best price option, you would choose A (four cans of soda). This would give you the amount of soda that you need at the lowest price.
Let's call the store value as s and the wholesale price as w. A store prices tapes by raising the wholesale price 50%(0.5 in decimals) and adding 25 cents, writing this as an equation, we have

If we invert the equation we're going to find the the wholesale price as a function of the store price.

Now, to find the wholesale price if the sales price is $1.99, we just need to evaluate s = 1.99 on the function we created.

The wholesale price is $1.16.
5.1 gallons of paint are in each container.