Answer:
Explanation:
Diamond has lesser density than platinum . So , if we take equal mass of both , the volume of mass of platinum will be far less .
The density of both diamond and platinum are more than water so both of them will be drowned in water completely . They will not float . On being drowned , platinum will displace lesser volume of water because of its less volume . So volume change in case of platinum mass will be far less . The volume change for diamond will be more because of its bigger size.
Answer:
Zn(NO₃)₂
Explanation:
this single replacement reaction will produce silver metal, Ag , and aqueous zinc nitrate, Zn(NO3)2 . Zinc is above silver is the metal reactivity series, so it will replace silver in silver nitrate
3.37 x 10¹⁰ molecules
Explanation:
Given parameters:
Volume of water = 1pL = 1 x 10⁻¹²L
Density of water = 1.00g/mL = 1000g/L
Unknown:
Number of water molecules = ?
Solution:
To solve this problem, we first find the mass of the water molecule in the inkjet.
Mass of water = density of water x volume of water
Then, the number of molecules can be determined using the expression below:
number of moles = 
Number of molecules = number of moles x 6.02 x 10²³
Solving:
Mass of water = 1 x 10⁻¹² x 1000 = 1 x 10⁻⁹g
Number of moles:
Molar mass of H₂O = 2 + 16 = 18g/mol
Number of moles =
= 5.6 x 10⁻¹⁴moles
Number of molecules = 5.6 x 10⁻¹⁴ x 6.02 x 10²³ = 33.7 x 10⁹
= 3.37 x 10¹⁰ molecules
Learn more:
Number of molecules brainly.com/question/4597791
#learnwithBrainly
Question:
A chemistry student needs of 10 g isopropenylbenzene for an experiment. He has available 120 g of a 42.7% w/w solution of isopropenylbenzene in acetone. Calculate the mass of solution the student should use. If there's not enough solution, press the "No solution" button.
Answer:
The answer to the question is as follows
The mass of solution the student should use is 23.42 g.
Explanation:
To solve the question we note the following
A solution containing 42.7 % w/w of isopropenylbenzene in acetone has 42.7 g of isopropenylbenzene in 100 grams of the solution
Therefore we have 10 g of isopropenylbenzene contained in
100 g * 10 g/ 42.7 g = 23.42 g of solution
Available solution = 120 g
Therefore the quantity to used from the available solution = 23.42 g of the isopropenylbenzene in acetone solution.
Answer: The mole ratio of sodium to sodium chloride 2:2.
Explanation:
As the given reaction equation is as follows.

Here, 2 moles of sodium reacts with 1 mole of
and leads to the formation of 2 moles of NaCl.
This means that 2 moles of sodium gives 2 moles of NaCl on reaction with chlorine.
Hence, the ratio of moles of sodium to sodium chloride is 2:2.
Thus, we can conclude that the mole ratio of sodium to sodium chloride 2:2.