Answer:
C
Step-by-step explanation:
We can solve simultaneous equations using substitution method, elimination method or graphical method. But for this purpose, we will be using the elimination method.
3x+4y=8 Equation 1
2x+y=42 Equation 2
Multiply Equation 1 by 2 and equation 2 by 3, so as to get the same coefficient for x
2(3x+4y=8)= 6x+8y=16 Equation 3
3(2x+y=42)= 6x+3y=126 Equation 4
Subtract equation 4 from 3, to eliminate x
6x-6x=0
8y-3y= 5y
16-126= -110
We now have 5y=-110
Divide both sides by 5,
y= -110/5
= -22
Substituting for y in equation 2
2x+(-22)= 42
2x= 42+22
2x=64
x= 64/2
= 32
(x, y)
(32, -22)
You will need to add all the dimensions together, also know as perimeter
The answer is y = -7x
Expalnation
Two points on the table are (0,0) and (1,-7)
Change in y = -7-0 = -7
Change in x = 1-0 = 1
Slope m of the function = -7/1= -7
Using y= mx + c
Picking point (0,0), x = 0, y = 0
y = mx + c becomes
0 = -7(0) + c
0 = 0 + c
c= 0
Hence, the equation is y = -7x + 0
which is y = -7x
Option b is the correct answer
By dividing each general term by 3.
Example:
(3/3=1)