1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shepuryov [24]
3 years ago
9

A chemist wants to extract copper metal from copper chloride solution. The chemist places 1.50 grams of aluminum foil in a solut

ion of 14 grams of copper (II) chloride. (single replacement reaction.) What best explains the state of the reaction mixture afterward​?
a. Less than 6.0 grams of copper (II) is formed, and some aluminum is left in the reaction mixture.
b. More than 6.5 grams of copper (II) is formed, and some aluminum is left in the reaction mixture.
c. Less than 6.0 grams of copper (II) is formed, and some copper chloride is left in the reaction mixture.
d. More than 6.5 grams of copper (II) is formed, and some copper chloride is left in the reaction mixture.
Chemistry
2 answers:
Lisa [10]3 years ago
8 0

Answer: d. More than 6.5 grams of copper (II) is formed, and some copper chloride is left in the reaction mixture.

Explanation: 2Al+3CuCl_2\rightarrow 2AlCl_3+3Cu

As can be seen from the chemical equation, 2 moles of aluminium react with 3 moles of copper chloride.

According to mole concept, 1 mole of every substance weighs equal to its molar mass.

Aluminium is the limiting reagent as it limits the formation of product and copper chloride is the excess reagent as (14-7.5)=6.5 g is left as such.

Thus 54 g of of aluminium react with 270 g of copper chloride.

1.50 g of aluminium react with=\frac{270}{54}\times 1.50=7.5 gof copper chloride.

3 moles of copper chloride gives 3 moles of copper.

7.5 g of copper chloride gives 7.5 g of copper.

dmitriy555 [2]3 years ago
6 0

<u>Answer:</u> The correct answer is Option c.

<u>Explanation:</u>

For the reaction of aluminium and copper (II) chloride, the equation follows:

[ex]2Al+3CuCl_3\rightarrow 2AlCl_3+3Cu[/tex]

The molarity is calculated by using the formula:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}    ....(1)

  • For Aluminium:

Given mass = 1.5 g

Molar mass = 27 g/mol

Putting values in equation 1, we get:

\text{Moles of aluminium}=\frac{1.5g}{27g/mol}=0.055mol

  • For Copper chloride:

Given mass = 14g

Molar mass = 134.45 g/mol

Putting values in equation 1, we get:

\text{Moles of copper chloride}=\frac{14g}{134.45g/mol}=0.104mol

  • By Stoichiometry of the reaction:

2 moles of aluminium reacts with 3 moles of copper chloride

So, 0.055 moles of aluminium will react with = \frac{3}{2}\times 0.055=0.0825mol of copper chloride.

As, the required amount of copper chloride is less than the given amount. Hence, it is present in excess.

Therefore, Aluminium is considered as a limiting reagent because it limits the formation of product.

  • By Stoichiometry of the above reaction:

2 moles of aluminium produces 3 moles of copper metal

So, 0.055 moles of aluminium will produce = \frac{3}{2}\times 0.055=0.0825mol of copper metal.

  • To calculate the mass of copper produced, we use equation 1:

Number of moles of copper = 0.0825 mol

Molar mass of copper = 63.5 g/mol

Putting values in the equation 1, we get:

0.0825mol=\frac{\text{Mass of copper}}{63.5g/mol}\\\\\text{Mass of copper}=5.238g

As, aluminium is fully utilized in the reaction. So, some copper chloride is left in the reaction mixture.

Hence, the correct answer is Option c.

You might be interested in
The molecules of a substance must have what characteristics in order to be flexible
Goryan [66]
Answer:
            <span>The molecules of a substance which must have the <u>a</u></span><u>bility to move past one another</u> are said to be flexible.

Explanation:
                   Those substances are said to be flexible which can be bent without breaking. There are many substances which are hard in nature but still can be bent. The hardness of such materials is due to strong interactions between the molecules and the flexibility comes due to their amorphous backbone. Therefore, greater the crystalline level of macromolecules lesser is the flexibility and greater the amorphous character greater is the flexibility and vice versa. Also, the flexibility of polymers is increased by adding plastisizers in it. Plastisizers make the hard polymers flexible by breaking the crosslinkers and enabling the macromolecules to move past one another.

6 0
2 years ago
4. Determine what elements are in the following compounds.
lilavasa [31]
Nitrogen=2, Hydrogen=8, Carbon=1, Oxygen=3

Hydrogen=4, Carbon=2, Oxygen=2

Iron=1, Nitrogen=2, Oxygen=6
8 0
3 years ago
Which of the following is the most likeley example of an favorable mutation
Lana71 [14]
A mutation that gives a rabbit a third ear
8 0
3 years ago
Enthalpy of <br><br> CH4(g) + 2NO2(g) -&gt; N2(g) + CO2(g) + 2H2O(l)
stira [4]

Answer:

-177.9 kJ.

Explanation:

Use Hess's law. Ca(s) + CO2(g) + 1/2O2(g) → CaCO3(s) ΔH = -812.8 kJ 2Ca(s) + O2(g) → 2CaO(s) ΔH = -1269.8 kJ We need to get rid of the Ca and O2 in the equations, so we need to change the equations so that they're on both sides so they "cancel" out, similar to a system of equations. I changed the second equation. Ca(s) + CO2(g) + 1/2O2(g) → CaCO3(s) ΔH = -812.8 kJ 2CaO(s) → 2Ca(s) + O2(g) ΔH = +1269.8 kJ The sign changes in the second equation above since the reaction changed direction. Next, we need to multiply the first equation by two in order to get the coefficients of the Ca and O2 to match those in the second equation. We also multiply the enthalpy of the first equation by 2. 2Ca(s) + 2CO2(g) + O2(g) → 2CaCO3(s) ΔH = -1625.6 kJ 2CaO(s) → 2Ca(s) + O2(g) ΔH = +1269.8 kJ Now we add the two equations. The O2 and 2Ca "cancel" since they're on opposite sides of the arrow. Think of it more mathematically. We add the two enthalpies and get 2CaO(s) + 2CO2(g) → 2CaCO3(s) and ΔH = -355.8 kJ. Finally divide by two to get the given equation: CaO(s) + CO2(g) → CaCO3(s) and ΔH = -177.9 kJ.

5 0
2 years ago
Oh, no! You just spilled 85.00 mL of 1.500 M sulfuric acid on your lab bench and need to clean it up immediately! Right next to
vredina [299]

Explanation:

We will balance equation which describes the reaction between sulfuric acid and sodium bicarbonate: as follows.

   H_2SO_4(aq) + 2NaHCO_3(s) \rightarrow Na2SO_4(aq) + 2H_2O(l) + 2CO_2(g)

Next we will calculate how many moles of H_2SO_4 are present in 85.00 mL of 1.500 M sulfuric acid.

As,       Molarity = \frac{\text{moles of solute}}{\text{liters of solution&#10;}}

            1.500 M = \frac{n}{0.08500 L&#10;}

                    n = 0.1275 mol H_2SO_4

Now set up and solve a stoichiometric conversion from moles of H_2SO_4  to grams of NaHCO_3. As, the molar mass of NaHCO_3 is 84.01 g/mol.

 0.1275 mol H_2SO_4 \times (\frac{2 mol NaHCO_3}{1 mol H_2SO_4}) \times (\frac{84.01 g NaHCO_3}{1 mol NaHCO_3})

                 = 21.42 g NaHCO_3

So unfortunately, 15.00 grams of sodium bicarbonate will "not" be sufficient to completely neutralize the acid. You would need an additional 6.42 grams to complete the task.

4 0
2 years ago
Other questions:
  • Carbonic acid reacts with water to yield bicarbonate ions and hydronium ions: h2co3+h2o?hco3?+h3o+ identify the conjugate acid-b
    15·1 answer
  • SCICLUL CUCCIUCUCURUCUS
    5·1 answer
  • the organ system that allows for movement of the organism as a whole and for internal movement of food through the digestive sys
    15·1 answer
  • What monomer is polymerized to make acrylate? What is the chemical name for this popular polymer?
    11·2 answers
  • Heat is added to 110.0 grams of liquid of water at 50.00°C to produce water vapor. The vapor is collected and heated to a temper
    15·1 answer
  • Estructura del Lewis del C 4+ ?
    8·1 answer
  • 1. In 1996 a meteor crashed into the Earth near Steelsville, Ontario. The resulting meteorite was found to contain 5,790 g of Mo
    14·1 answer
  • Please help
    11·1 answer
  • -
    11·1 answer
  • A full moon appears on July 1: On what date is the next full moon likely to appear in the night sky?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!