<h3>
Answer:</h3>
The centripetal acceleration is 26.38 m/s²
<h3>
Explanation:</h3>
We are given;
- Mass of rubber stopper = 13 g
- Length of the string(radius) = 0.93 m
- Time for one revolution = 1.18 seconds
We are required to calculate the centripetal acceleration.
To get the centripetal acceleration is given by the formula;
Centripetal acc = V²/r
Where, V is the velocity and r is the radius.
Since time for 1 revolution is 1.18 seconds,
Then, V = 2πr/t, taking π to be 3.142 ( 1 revolution = 2πr)
Therefore;
Velocity = (2 × 3.142 × 0.93 m) ÷ 1.18 sec
= 4.953 m/s
Thus;
Centripetal acceleration = (4.953 m/s)² ÷ 0.93 m
= 26.38 m/s²
Hence, the centripetal acceleration is 26.38 m/s²
The effects<span> of A</span>nthrax<span> on the </span>body<span> include, shock, difficulty breathing, and intestinal inflammation. In serious cases, A</span>nthrax<span> can lead to inflammation of the areas surrounding the brain, and spinal cord, causing severe bleeding. This illness could also lead to death.
I hope this helps!</span>
<span>5.5×10−2M in calcium chloride and 8.0×10−2M in magnesium nitrate.
What mass of sodium phosphate must be added to 1.5L of this solution to completely eliminate the hard water ion
1) Content of Ca (2+) ions
Calcium chloride = CaCl2
Ionization equation: CaCl2 ---> Ca (2+) + 2 Cl (-)
=> Molar ratios: 1 mol of CaCl2 : 1 mol Ca(2+) : 2 mol Cl(-)
Calculate the number of moles of CaCl2 in 1.5 liters of 5.5 * 10^-2 M solution
M = n / V => n = M*V = 5.5 * 10^ -2 M * 1.5 l = 0.0825 mol CaCl2
=> 0.0825 mol Ca(2+)
2) Number of phosphate ions needed to react with 0.0825 mol Ca(2+)
formula of phospahte ion: PO4 (3-)
molar ratio: 2PO4(3-) + 3Ca(2+) = Ca3 (PO4)2
Proportion: 2 mol PO4(3-) / 3 mol Ca(2+) = x / 0.0825 mol Ca(2+)
=> x = 0.0825 coml Ca(2+) * 2 mol PO4(3-) / 3 mol Ca(2+) = 0.055 mol PO4(3-)
3) Content of Mg(2+) ions
Ionization equation: Mg (NO3)2 ----> Mg(2+) + 2 NO3 (-)
Molar ratios: 1 mol Mg(NO3)2 : 1 mol Mg(2+) + 2 mol NO3(-)
number of moles of Mg(NO3)2 in 1.5 liter of 8.0 * 10^-2 M solution
n = M * V = 8.0 * 10^ -2 M * 1.5 liter = 0.12 moles Mg(NO3)2
ions of Mg(2+) = 0.12 mol Mg(NO3)2 * 1 mol Mg(2+) / mol Mg(NO3)2 = 0.12 mol Mg(2+)
4) Number of phosphate ions needed to react with 0.12 mol Mg(2+)
2PO4(3-) + 3Mg(2+) = Mg3(PO4)2
=> 2 mol PO4(3-) / 3 mol Mg(2+) = x / 0.12 mol Mg(2+)
=> x = 0.12 * 2/3 mol PO4(3-) = 0.16 mol PO4(3-)
5) Total number of moles of PO4(3-)
0.055 mol + 0.16 mol = 0.215 mol
6) Sodium phosphate
Sodium phosphate = Na3(PO4)
Na3PO4 ---> 3Na(+) + PO4(3-)
=> 1 mol Na3PO4 : 1 mol PO4(3-)
=> 0.215 mol PO4(3-) : 0.215 mol Na3PO4
mass in grams = number of moles * molar mass
molar mass of Na3 PO4 = 3*23 g/mol + 31 g/mol + 4*16 g/mol = 164 g/mol
=> mass in grams = 0.215 mol * 164 g/mol = 35.26 g
Answer: 35.26 g of sodium phosphate
</span>
Answer:
Barium carbonate powder is stirred add pulp in the entry, the vitriol that the adds solubility then reaction that makes the transition is filtered and is obtained the barium sulfate filter cake and liquid after the transition.