Question:
<em>What effects does the concentration of reactants have on the rate of a reaction?</em>
Answer:
<em>Reactant concentration. Increasing the concentration of one or more reactants will often increase the rate of reaction. This occurs because a higher concentration of a reactant will lead to more collisions of that reactant in a specific time period.</em>
<em>Increasing the concentration of reactants generally increases the rate of reaction because more of the reacting molecules or ions are present to form the reaction products. ... When concentrations are already high, a limit is often reached where increasing the concentration has little effect on the rate of reaction.</em>
Hope this helps, have a good day. c;
Answer:
Carbon Monoxide
Explanation:
Fossil fuels are hydrocarbons which only contain hydrogen and carbon.
When it is burnt in air, it reacts according to this general equation:
2(CH) + 3O2 >> H2O + CO + CO2
- Carbondioxide
- Carbon Monoxide
- Water
Answer:
a. The specific heat capacity of the gaseous ethanol is less than the specific heat capacity of liquid ethanol.
Explanation:
The heating curve is a curve that represents temperature (T) in the y-axis vs. added heat (Q) in the x-axis. The slope is T/Q = 1/C, where C is the heat capacity. Then, the higher the slope, the lower the heat capacity. For a constant mass, it can also represent the specific heat capacity (c).
Heats of vaporization and fusion cannot be calculated from these sections of the heating curve.
<em>Which statement below explains that?</em>
<em>a. The specific heat capacity of the gaseous ethanol is less than the specific heat capacity of liquid ethanol.</em> YES.
<em>b. The specific heat capacity of the gaseous ethanol is greater than the specific heat capacity of liquid ethanol.</em> NO.
<em>c. The heat of vaporization of ethanol is less than the heat of fusion of ethanol.</em> NO.
<em>d. The heat of vaporization of ethanol is greater than the heat of fusion of ethanol.</em> NO.