Answer:
6 minutes
Step-by-step explanation:
'a' in the formula represents altitude in feet. You are told the altitude is 21000 feet, so put that into the formula:
21000 = 3400t +600
You can solve this for t:
20400 = 3400t . . . . . subtract 600 from both sides
6 = t . . . . . . . . . . . . . . . divide both sides by 3400
The problem statement tells you that t represents minutes after lift off, so this solution means the altitude is 21000 feet 6 minutes after lift off.
The question is asking for the number of minutes after lift off that the plane reaches an altitude of 21000 feet, so this answers the question directly:
The plane is at an altitude of 21000 feet 6 minutes after lift off.
Find the area of the cone:
Area of cone: ⅓r^2h
⅓r^2h
= ⅓(3.5)^2(7)
= ⅓(12.25)(7)
= 1/3(85.75)
= 85.75/3
1/3 cup sloshed out:
(85.75/3 )/3
= 29.9 cubic cm
Y=2-3(x-7)
You just add +2 to each side and the positive and negative cancel out and it switches it over
(2x^3)*(5x^2)+(2x^3)*(4)+(1)*(5x^2)+(1)*(4)
10x^5+8x^3+5x^2+4
Answer:

Step-by-step explanation:
<u><em>The complete question is:</em></u>
In circle V, angle WXZ measures 30°. Line segments WV, XV, ZV, and YV are radii of circle V. Circle V is shown. Line segments W V, X V, Z V, and Y V are radii. Lines are drawn from point W to point X and from point Z to point Y to form secants. Point U is on the circle between points W and X. What is the measure of Arc W U X in circle V?
The picture of the question in the attached figure
step 1
Find the measure of angle XWV
we know that
The triangle VWX is an isosceles triangle, because has two equal sides (VX=VW)
we have

so

Remember that an isosceles triangle has two equal interior angles
so
step 2
Find the measure of angle WVX
Remember that the sum of the interior angles in any triangle must be equal to 180 degrees
so

substitute the given values

step 3
Find the measure of arc WUX
we know that
----> by central angle
we have

therefore
