Answer:
The sport utility vehicle was traveling at V2= 11.5 m/s.
Explanation:
m1= 1090 kg
V1= 30.4 m/s
m2= 2880 kg
V2= ?
m1*V1 = m2*V2
V2= (m1*V1)/m2
V2= 11.5 m/s
Answer:
Speed of cart's might be less than the high speed after 5 seconds.
Explanation:
Given that,
A fan cart with the fan set to high rolled across the floor.
Let the speed of fan cart with set to high is
per second.
The fan supplies a force to the cart. If a lower fan speed were used, less force would be applied. This would cause a slower change in the cart's speed. So, the cart would be rolling more slowly than
per second after 5 seconds. The speed of cart's might be less than
per second.
Force is needed
A. for a moving object to keep moving at the same speed and direction
B. for a moving object to change its speed
C. for a motionless object to remain still
D. to prevent a moving object from turning
Hence,
Speed of cart's might be less than the high speed after 5 seconds.
Answer:
t = 2.58*10^-6 s
Explanation:
For a nonconducting sphere you have that the value of the electric field, depends of the region:

k: Coulomb's constant = 8.98*10^9 Nm^2/C^2
R: radius of the sphere = 10.0/2 = 5.0cm=0.005m
In this case you can assume that the proton is in the region for r > R. Furthermore you use the secon Newton law in order to find the acceleration of the proton produced by the force:

Due to the proton is just outside the surface you can use r=R and calculate the acceleration. Also, you take into account the charge density of the sphere in order to compute the total charge:

with this values of a you can use the following formula:

hence, the time that the proton takes to reach a speed of 2550km is 2.58*10^-6 s
I believe it is
1.6x=2.7(x-1.8)
1.1x=2.7*1.8
x~4.4
4.4*1.6
~7.1m
I think F= mv²/r
And F=ma
So, ma = mv²/r
a = v²/r
a = 100/5
a = 20 m/s