Step-by-step explanation:
1 foot x3 is 36, and 36 divided by 4 is 9. 9 is your answer
:)
Answer:
The value of y would be 45.5
Step-by-step explanation:
To solve this problem, start with the base form of direct variation.
y = kx
Now we can use our original values to model the equation and find k.
35 = k(2.5)
14 = k
Now we can model the equation as:
y = 14x
Now to find y, when x = 3.25, simply put 3.25 into the equation.
y = 14(3.25)
y = 45.5
Set up a x/100 = (14-48)/48 = -34/48 Multiply the cross 48x = -3400 x = 70.8333 so around -70.83% change
Answer:
The leading coefficient of the polynomial is 5 .
Step-by-step explanation:
f(x) = 6x^5 + 9x^4 + 2x^3 + 3x^2 - 4x -6
In this polynomial , the highest exponential is the leading coefficient .
So there are 5 coefficients ,
5 , 4 , 3 , 2 , and x
so above , the highest one is 5 .
Complete question :
According to the National Beer Wholesalers Association, U.S. consumers 21 years and older consumed 26.9 gallons of beer and cider per person during 2017. A distributor in Milwaukee believes that beer and cider consumption are higher in that city. A sample of consumers 21 years and older in Milwaukee will be taken, and the sample mean 2017 beer and cider consumption will be used to test the following null and alternative hypotheses:
H, :μ< 26.9
Ha : μ> 26.9
a. Assume the sample data led to rejection of the null hypothesis. What would be your conclusion about consumption of beer and cider in Milwaukee?
b. What is the Type I error in this situation? What are the consequences of making this error?
c. What is the Type II error in this situation? What are the consequences of making this error?
Answer:
Kindly check explanation
Step-by-step explanation:
Given the null and alternative hypothesis :
H0 :μ< 26.9
Ha : μ> 26.9
Assume the Null hypothesis is rejected ;
We conclude that there is significant evidence that the mean consumption of beer and cider is higher in the city (more than 26.9 gallons).
B.) Type 1 error is committed when the Null hypothesis is incorrectly rejected.
C.) Type 2 error is committed when we fail to reject a false null hypothesis. In this scenario, we fail to conclude that the average consumption of beer and cider is more than 26.9 gallons per person.