Answer:
Given all the blanks true explained below.
Step-by-step explanation:
Given the pairs of triangle,
First pair, ΔABC and ΔUVW
In these triangles to prove triangles congruent we need all three sides equal but AB≠UV. Hence, not congruent
Second pair, ΔABC and ΔGHJ
To prove triangles congruent we need all three sides equal but AB≠GH Hence, not congruent
Third pair, ΔABC and ΔPQR
To prove triangles congruent we need all three sides equal
AB=PQ=2 units
![BC=\sqrt{(-1+4)^{2} + (1-4)^{2} } =\sqrt{18}units](https://tex.z-dn.net/?f=BC%3D%5Csqrt%7B%28-1%2B4%29%5E%7B2%7D%20%2B%20%281-4%29%5E%7B2%7D%20%7D%20%3D%5Csqrt%7B18%7Dunits)
![AC=\sqrt{(-1+4)^{2} + (1-2)^{2} } =\sqrt{10}units](https://tex.z-dn.net/?f=AC%3D%5Csqrt%7B%28-1%2B4%29%5E%7B2%7D%20%2B%20%281-2%29%5E%7B2%7D%20%7D%20%3D%5Csqrt%7B10%7Dunits)
![PR=\sqrt{(-1-2)^{2} + (-1+2)^{2} } =\sqrt{10}units](https://tex.z-dn.net/?f=PR%3D%5Csqrt%7B%28-1-2%29%5E%7B2%7D%20%2B%20%28-1%2B2%29%5E%7B2%7D%20%7D%20%3D%5Csqrt%7B10%7Dunits)
Hence, BC=QR, AC=PR
All 3 sides equal. By SSS rule both triangles congruent.
Fourth pair, ΔGHJ and ΔUVW
GH=UV=3 units
HJ=VW=2 units
Hence, by Pythagoras theorem,
GJ=UW=![\sqrt{3^{2}+2^{2}}=\sqrt{13} units](https://tex.z-dn.net/?f=%5Csqrt%7B3%5E%7B2%7D%2B2%5E%7B2%7D%7D%3D%5Csqrt%7B13%7D%20units)
Hence, All 3 sides equal. By SSS rule both triangles congruent.
Fifth pair, ΔGHJ and ΔPQR
To prove triangles congruent we need all three sides equal but PQ≠GH Hence, not congruent
Sixth pair, ΔPQR and ΔUVW
To prove triangles congruent we need all three sides equal but PQ≠UV. Hence, not congruent