1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lyrx [107]
3 years ago
12

a math teacher claims that she has developed a review course that increases the score of students on the math portion of a colle

ge entrance exam. based on the data from the administrator of the exam, scores are normally distributed with u=514. the teacher obtains a random sample of 2000 students. puts them through the review class and finds that the mean math score of the 2000 is 520 with a standard deviation of 119. A.state the null and alternative hypotheses. B.test the hypothesis at the a=.10 level of confidence. is a mean math score of 520 significantly higher than 514? find the test statistic, find P-value. is the sample statistic significantly higher? C.​ do you think that a mean math score of 520 vs 514 will affect the decision of a school admissions adminstrator? in other words does the increase in the score have any practical significance? D. test the hypothesis at the a=.10 level of confidence with n=350 students. assume that the sample mean is still 520 and the sample standard deviation is still 119. is a sample mean of 520 significantly more than 514? find test statistic, find p value, is the sample mean statisically significantly higher? what do you conclude about the impact of large samples on the p-value?
Mathematics
1 answer:
madam [21]3 years ago
8 0

Answer:

A.

H_0: \mu\leq514\\\\H_1: \mu>514

B. Z=2.255. P=0.01207.

C. Although it is not big difference, it is an improvement that has evidence. The scores are expected to be higher in average than without the review course.

D. P(z>0.94)=0.1736

Step-by-step explanation:

<em>A. state the null and alternative hypotheses.</em>

The null hypothesis states that the review course has no effect, so the scores are still the same. The alternative hypothesis states that the review course increase the score.

H_0: \mu\leq514\\\\H_1: \mu>514

B. test the hypothesis at the a=.10 level of confidence. is a mean math score of 520 significantly higher than 514? find the test statistic, find P-value. is the sample statistic significantly higher?

The test statistic Z can be calculated as

Z=\frac{M-\mu}{s/\sqrt{N}} =\frac{520-514}{119/\sqrt{2000}}=\frac{6}{2.661}=2.255

The P-value of z=2.255 is P=0.01207.

The P-value is smaller than the significance level, so the effect is significant. The null hypothesis is rejected.

Then we can conclude that the score of 520 is significantly higher than 514, in this case, specially because the big sample size.

C.​ do you think that a mean math score of 520 vs 514 will affect the decision of a school admissions adminstrator? in other words does the increase in the score have any practical significance?

Although it is not big difference, it is an improvement that has evidence. The scores are expected to be higher in average than without the review course.

D. test the hypothesis at the a=.10 level of confidence with n=350 students. assume that the sample mean is still 520 and the sample standard deviation is still 119. is a sample mean of 520 significantly more than 514? find test statistic, find p value, is the sample mean statisically significantly higher? what do you conclude about the impact of large samples on the p-value?

In this case, the z-value is

Z=\frac{520-514}{s/\sqrt{n}} =\frac{6}{119/\sqrt{350}} =\frac{6}{6.36} =0.94\\\\P(z>0.94)=0.1736>\alpha

In this case, the P-value is greater than the significance level, so there is no evidence that the review course is increasing the scores.

The sample size gives robustness to the results of the sample. A large sample is more representative of the population than a smaller sample. A little difference, as 520 from 514, but in a big sample leads to a more strong evidence of a change in the mean score.

Large samples give more extreme values of z, so P-values that are smaller and therefore tend to be smaller than the significance level.

You might be interested in
A bike and skate shop rents bike for $21 per day and pairs of skates for $20 per day. To remain viable, the shop needs to make a
Leya [2.2K]
Let the number of bike be x and the number of skates be y, then
21x + 20y ≥ 362 . . . (1)
2y = x . . . (2)

Putting (2) into (1), then
21(2y) + 20y ≥ 362
42y + 20y ≥ 362
62y ≥ 362
y ≥ 5.84

The least number of pairs of skates they need to rent each day to make their minimum is 6.
7 0
3 years ago
The value of $y$ varies inversely as $\sqrt x$ and when $x=2$, $y=4$. What is $x$ when $y=1$?
Dovator [93]
$x=3$ I think that’s it... try that
4 0
3 years ago
Suppose you have a right triangle with congruent legs and a hypotenuse that measure (12sqrt(5))/5 What is the length of the smal
anastassius [24]

The length of the smaller leg is 3.79

<h3>How to determine the length of the smaller leg?</h3>

Represent the smaller leg with x.

So, we have:

x^2 + x^2 = ((12\sqrt5)/5)^2 -- Pythagoras theorem

This gives

2x^2 = 144/5

Divide by 2

x^2 = 72/5

This gives

x^2 = 14.4

Take the square root

x = 3.79

Hence, the length of the smaller leg is 3.79

Read more about right triangles at

brainly.com/question/6322314

#SPJ1

4 0
2 years ago
Sin Z = <br><br> Cos Z = <br><br> Tan Z =
Daniel [21]

sin z= z/y

cos z= x/y

tan z= z/x

4 0
3 years ago
Determine whether AB is a median,altitude,or neither
nasty-shy [4]

Answer:

median

Step by step:

the line segment from a vertex to the midpoint of the opposite side. It is also an angle bisector when the vertex is an angle in an equilateral triangle or the non-congruent angle of an isoceles triangle.

7 0
3 years ago
Other questions:
  • there are 76 birdhouses, if 4 birdhouses are occupied, how much percent of the birdhouses are occupied?
    15·2 answers
  • These box plots show the basketball scores for two teams
    7·1 answer
  • Please help determine the relationship of the following linear equations
    11·1 answer
  • What is the slope of the line whose equation is 2x-3y=5
    6·2 answers
  • Carmen has 75% less money than Anna. How much money does Carmen have if Anna has 256?
    11·1 answer
  • Solve for w<br> -4(2+1) = -24
    7·2 answers
  • 7,030 divided by 3 the division algorithm ?
    11·1 answer
  • How do I solve this equation? please help
    6·2 answers
  • At a middle school, 95 students have freckles. There are 382 students in the school. To the nearest tenth of a percent, what per
    12·1 answer
  • A machine can manufacture 1,805 nails in 10 minutes.how many nails can the machine make in 8 minutes?​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!