1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mina [271]
3 years ago
14

What two numbers multiple to -3468 and adds to 24

Mathematics
1 answer:
Alex777 [14]3 years ago
4 0

Answer:

72.1 and -48.1

Step-by-step explanation:

I set up the equations x + y = 24 and x*y=-3468. Then I substituted for y and used the quadratic formula to come to two numbers rounded to about 72.1 and -48.1. Hope that helps :)

You might be interested in
Um help! how do I do this?
valkas [14]
1/2 t-4(2+t)=20
1/2 t-8-4t=20
least common multiple=2
t-16-8t=40
-7t=40+16
-7t=56
t=56/-7=-8

Answer: t=-8

To check
-8/2 - 4(2-8)=-4-4(-6)=-4+24=20
5 0
3 years ago
Read 2 more answers
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
I'm confused can someone maybe help me? (Picture below)
Shalnov [3]

Answer:

hlo ji good evening ji please follow me

4 0
3 years ago
exercise 5 explain how you know the values of the digits in the number 58?then exercise 6 `explain why you should record a 1 in
melamori03 [73]
58 is 50 plus 8. So its 50 and 8.That is for the first one.
3 0
3 years ago
Help ASAP no links. IF you send link= reported
vaieri [72.5K]

Answer:

see explanation

Step-by-step explanation:

put a point to the right of -1 (-0.9)

then, put a point 2 points to the left of -1 (-1.2)

6 0
3 years ago
Other questions:
  • Which of the following pairs of functions are inverse of each other?
    13·1 answer
  • A brine solution of salt flows at a constant rate of 8L/min into a large tank that initially held 100L of brine solution in whic
    12·1 answer
  • Which expression is equal to 4 (2+3) ?<br><br><br> 1. 2+12<br> 2. 4+5<br> 3. 8+3<br> 4. 8+12
    15·2 answers
  • Simplifying expressions:<br> Simplify 22-5(2x+4)
    12·2 answers
  • I need to find the slope-intercept form of the equation of the line through (-5,-2) and (-3,4)
    11·1 answer
  • Please answer this correctly
    11·2 answers
  • I need help with this problem
    15·1 answer
  • Mr. and Mrs. Simpson went to the movies. They bought some popcorn for $25.50, two boxes of candy for $18 and two drinks for $14.
    6·1 answer
  • The points are (-2,3) and (6,r) lie in a line with slope (3/2). find the missing coordinate
    13·1 answer
  • The product of −2 and a number x is greater than 30. Whats the solution of the inequality.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!