Answer:
The model is:
 z = 14* X₁₁ + 14*X₁₂ + 5*X₁₃ + 10*X₂₁ + 10*X₂₂ + 10*X₂₃ + 5*X₃₁ + 5*X₃₂ + 5*X₃₃    to maximize
Subject to:
 First center               X₁₁  +  X₂₁  + X₃₁  ≤  550
 Second center         X₁₂  +  X₂₂  + X₃₂  ≤ 750
 Third center               X₁₃  + X₂₃  + X₃₃  ≤ 275                  
22* X₁₁  + 16* X₂₁  + 9*X₃₁     ≤   11000
22* X₁₂  + 16* X₂₂  + 9*X₃₂   ≤   2700
22*X₁₃  + 16* X₂₃  +  9*X₃₃  ≤  3400
X₁₁  +  X₁₂  + X₁₃  ≤  710
X₂₁  + X₂₂ + X₂₃  ≤  900
X₃₁ + X₃₂ + X₃₃  ≤  350
2700*(X₁₁  +  X ₂₁  + X₃₁)  -  11000*(X₁₂ + X₂₂ + X₃₂) = 0
3400*(X₁₁  +  X ₂₁  + X₃₁) - 11000*( ( X₁₃ + X₂₃ + X₃₃) = 0
Xij >= 0
Step-by-step explanation:
Let´s call Xij   product size i produced in center j
According to this, we get the following set of variable
X₁₁    product size huge produced in center 1
X₁₂    product size huge produced in center 2
X₁₃   product size huge produced in center 3
X₂₁   product size average produced in center 1
X₂₂   product size average produced in center 2
X₂₃   product size average produced in center 3
X₃₁  product size-tiny produced in center 1
X₃₂ product size-tiny produced in center 2
X₃₃ product size-tiny produced in center 3
Then Objective function is 
z = 14* X₁₁ + 14*X₁₂ + 5*X₁₃ + 10*X₂₁ + 10*X₂₂ + 10*X₂₃ + 5*X₃₁ + 5*X₃₂ + 5*X₃₃
Constrains
Center capacity
1.-   First center               X₁₁  +  X₂₁  + X₃₁  ≤  550
2.-   Second center         X₁₂  +  X₂₂  + X₃₂  ≤ 750
3.- Third center               X₁₃  + X₂₃  + X₃₃  ≤ 275
Water available
1.-  22* X₁₁  + 16* X₂₁  + 9*X₃₁     ≤   11000
2.-  22* X₁₂  + 16* X₂₂  + 9*X₃₂   ≤   2700
3.-   22*X₁₃  + 16* X₂₃  +  9*X₃₃  ≤  3400
Demand constrain
Product huge
X₁₁  +  X₁₂  + X₁₃  ≤  710
Product average
X₂₁  + X₂₂ + X₂₃  ≤  900
Product tiny
X₃₁ + X₃₂ + X₃₃  ≤  350
Fraction SP/CC must be the same
First and second centers  fraction SP/CC   
(X₁₁  +  X ₂₁  + X₃₁)/ 11000   =  (X₁₂ + X₂₂ + X₃₂)/ 2700
2700*(X₁₁  +  X ₂₁  + X₃₁)  -  11000*(X₁₂ + X₂₂ + X₃₂) = 0
First and third centers  fraction SP/CC   
(X₁₁  +  X ₂₁  + X₃₁)/ 11000   = ( X₁₃ + X₂₃ + X₃₃)/ 3400
3400*(X₁₁  +  X ₂₁  + X₃₁) - 11000*( ( X₁₃ + X₂₃ + X₃₃) = 0
The model is:
 z = 14* X₁₁ + 14*X₁₂ + 5*X₁₃ + 10*X₂₁ + 10*X₂₂ + 10*X₂₃ + 5*X₃₁ + 5*X₃₂ + 5*X₃₃
Subject to:
 First center               X₁₁  +  X₂₁  + X₃₁  ≤  550
 Second center         X₁₂  +  X₂₂  + X₃₂  ≤ 750
 Third center               X₁₃  + X₂₃  + X₃₃  ≤ 275                  
22* X₁₁  + 16* X₂₁  + 9*X₃₁     ≤   11000
22* X₁₂  + 16* X₂₂  + 9*X₃₂   ≤   2700
22*X₁₃  + 16* X₂₃  +  9*X₃₃  ≤  3400
X₁₁  +  X₁₂  + X₁₃  ≤  710
X₂₁  + X₂₂ + X₂₃  ≤  900
X₃₁ + X₃₂ + X₃₃  ≤  350
2700*(X₁₁  +  X ₂₁  + X₃₁)  -  11000*(X₁₂ + X₂₂ + X₃₂) = 0
3400*(X₁₁  +  X ₂₁  + X₃₁) - 11000*( ( X₁₃ + X₂₃ + X₃₃) = 0
Xij >= 0