Answer:

Step-by-step explanation:
<u>Simplifying Roots</u>
When roots are found in an algebraic expression, it's convenient to recall these properties:
![\displaystyle \sqrt[m]{x^n}=\ x^{\frac{n}{m}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Csqrt%5Bm%5D%7Bx%5En%7D%3D%5C%20x%5E%7B%5Cfrac%7Bn%7D%7Bm%7D%7D)


The expression is given as
![\displaystyle \frac{\sqrt[4]{9}-\sqrt{9}}{\sqrt[4]{9^5}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B%5Csqrt%5B4%5D%7B9%7D-%5Csqrt%7B9%7D%7D%7B%5Csqrt%5B4%5D%7B9%5E5%7D%7D)
We know that
, so
![\displaystyle \frac{\sqrt[4]{3^2}-\sqrt{3^2}}{\sqrt[4]{3^{10}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B%5Csqrt%5B4%5D%7B3%5E2%7D-%5Csqrt%7B3%5E2%7D%7D%7B%5Csqrt%5B4%5D%7B3%5E%7B10%7D%7D%7D)
Applying the root property

Simplifying the fractions

Multiplying both parts by 

Operating the exponents

Or equivalently

Simplifying and converting back to root notation

Operating
