Answer:
-24
Step-by-step explanation:
25-31=-6
-6 times 4=-24
Answer:
f(g(x)) = x^4 + 12x^3 + 14x^2 -132x + 123
Step-by-step explanation:
Here, we simply will place g(x) into f(x)
So every x in f(x) is replaced by g(x)
Thus, we have;
(x^2 + 6x + 11)^2 + 2
= (x^2+6x-11)(x^2 + 6x -11) + 2
= x^4 + 6x^3 -11x^2 + 6x^3 + 36x^2 - 66x -11x^2 -66x + 121 + 2
= x^4 + 12x^3 + 14x^2 -132x + 123
Answer: 1. To add or subtract radicals, the indices and what is inside the radical (called the radicand) must be exactly the same. If the indices and radicands are the same, then add or subtract the terms in front of each like radical. If the indices or radicands are not the same, then you can not add or subtract the radicals.2.The index tells you how many of a kind you need to put together to be able to move that number or variable from inside the radical to outside the radical. For example, if the index is 2 (a square root), then you need two of a kind to move from inside the radical to outside the radical.3.When factoring a trinomial in the form x2 + bx + c, consider the following tips. Look at the c term first. o If the c term is a positive number, then the factors of c will both be positive or both be negative. In other words, r and s will have the same sign.
Step-by-step explanation:
Answer:
The turns of a graph is represented by the number of maximum or minimum that the function has.
If we differenciate f(x) we get:
f'(x)=4x^3+6x
f'(x)=2x(2x^2 + 3)
Therefore f'(x) =0, when x=0. Given that negative roots are not defined.
Therefore, the number of turns will be given by the number of solutions of f'(x) which is 1.
Attached you find the graph of the function which confirms the number of turns.
If the function had other solutions, the maximum number of turns it could have is 3! because f'(x) is a third degree polynomial, therefore it can't have more than 3 solutions!
Answer:
the first statement is: AB is congruent to DC.
reason: given
Step-by-step explanation:
im not sure about the others