Isotopes= a group of atoms with the same no. of protons , but different no. of neutrons
Hydrogen isotopes

The name of the second isotope is deuterium and the name of the third isotope is tritium(radioactive).The most abundant isotope is
Answer:
Diatomic molecules consist of two atoms that are chemically bonded. The two atoms can be the same or different chemical elements. As for whether or not they are compounds, there is not technically an answer. This is because all compounds are molecules, but not all molecules are compounds. For example diatomic molecules that comprise the chemical compounds nitric acid, carbon monoxide, and hydrogen chloride are made up of two different elements. As you can see, most diatomic molecules are not made up of the same kind of elements and not every diatomic molecule comprises a chemical compound.
hope this helps :)
Explanation:
I’m so sorry about the other guy! The answer is A. Infertile soil honey
God Bless!! <3
Flerovium at its ground state is solid. It has electron configuration of [Rn]5f¹⁴6d¹⁰7s²7p². The expected number of valence electrons in a flerovium atom is 2. A ground state is the most stable state of an atom at satndard temperature and pressure.
Answer:
Uses nuclear reactions to produce energy
Implodes a fuel pellet
Explanation:
Laser fusion is a method of initiating nuclear fusion reactions through heating, and compressing fuel pellets containing deuterium and tritium using high energy density laser beams. Lase fusion is also known as inertial confinement fusion and the energy produced by the process is known as Laser Inertial Fusion Energy, LIFE.
During the process of laser fusion, small pellets of deuterium-tritium (DT) isotopes mixture are fed into a blast chamber where they are compressed to high densities using a number of amplified laser beams in the chamber.
The high energy density of the beams as well as the heat produced due to compression, induces the thermonuclear explosion ignition resulting in the production of high energetic products such as charged particles, x-rays and neutrons. The energy produced is absorbed and stored as heat in a blanket that is then used in a steam thermal cycle to generate electrical power.
There are two methods of compression of the DT pellet: direct and indirect-drive laser fusions.
However, there are a number of limitations to energy production by this process. One limitation is that the process is extremely inefficient in energy energy production. Also, the heat produced by the flashtubes results innthe deformation of the laser glass.