Answer:
All answers stated below:
Explanation:
1. Plate Tectonics
2. lithosphere
3. asthenosphere
4. divergent boundary
5. (not sure)
6. convergent
7. transform
8. convection
Answer:all u need to do is list what u are doing. Do u do FLVS? cuz tht was in ... have been filled in for you. You may need to adjust the numbers to match the steps you decide on. 1. Identify the variables. 2. Write out your hypothesis in an if/then format. 3.Gather your materials. 4. 5.
Explanation:
Answer:
Yes the reaction occur when aqueous solutions happened
Answer:
the action or process of filtering something.
Answer:

Explanation:
We are given the amounts of two reactants, so this is a limiting reactant problem.
1. Assemble all the data in one place, with molar masses above the formulas and other information below them.
Mᵣ: 58.44
NaCl + AgNO₃ ⟶ NaNO₃ + AgCl
m/g: 0.245
V/mL: 50.
c/mmol·mL⁻¹: 0.0180
2. Calculate the moles of each reactant

3. Identify the limiting reactant
Calculate the moles of AgCl we can obtain from each reactant.
From NaCl:
The molar ratio of NaCl to AgCl is 1:1.

From AgNO₃:
The molar ratio of AgNO₃ to AgCl is 1:1.

AgNO₃ is the limiting reactant because it gives the smaller amount of AgCl.
4. Calculate the moles of excess reactant
Ag⁺(aq) + Cl⁻(aq) ⟶ AgCl(s)
I/mmol: 0.900 4.192 0
C/mmol: -0.900 -0.900 +0.900
E/mmol: 0 3.292 0.900
So, we end up with 50. mL of a solution containing 3.292 mmol of Cl⁻.
5. Calculate the concentration of Cl⁻
![\text{[Cl$^{-}$] } = \dfrac{\text{3.292 mmol}}{\text{50. mL}} = \textbf{0.066 mol/L}\\\text{The concentration of chloride ion is $\large \boxed{\textbf{0.066 mol/L}}$}](https://tex.z-dn.net/?f=%5Ctext%7B%5BCl%24%5E%7B-%7D%24%5D%20%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B3.292%20mmol%7D%7D%7B%5Ctext%7B50.%20mL%7D%7D%20%3D%20%5Ctextbf%7B0.066%20mol%2FL%7D%5C%5C%5Ctext%7BThe%20concentration%20of%20chloride%20ion%20is%20%24%5Clarge%20%5Cboxed%7B%5Ctextbf%7B0.066%20mol%2FL%7D%7D%24%7D)